|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
|
from diffusers.utils import BaseOutput, logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
|
"""
|
|
Output class for the scheduler's `step` function output.
|
|
|
|
Args:
|
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
|
denoising loop.
|
|
"""
|
|
|
|
prev_sample: torch.FloatTensor
|
|
|
|
|
|
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
"""
|
|
NOTE: this is very similar to diffusers.FlowMatchEulerDiscreteScheduler. Except our timesteps are reversed
|
|
|
|
Euler scheduler.
|
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
|
methods the library implements for all schedulers such as loading and saving.
|
|
|
|
Args:
|
|
num_train_timesteps (`int`, defaults to 1000):
|
|
The number of diffusion steps to train the model.
|
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|
shift (`float`, defaults to 1.0):
|
|
The shift value for the timestep schedule.
|
|
"""
|
|
|
|
_compatibles = []
|
|
order = 1
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_train_timesteps: int = 1000,
|
|
shift: float = 1.0,
|
|
use_dynamic_shifting=False,
|
|
):
|
|
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32).copy()
|
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
|
|
|
sigmas = timesteps / num_train_timesteps
|
|
if not use_dynamic_shifting:
|
|
|
|
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
|
|
|
self.timesteps = sigmas * num_train_timesteps
|
|
|
|
self._step_index = None
|
|
self._begin_index = None
|
|
|
|
self.sigmas = sigmas.to("cpu")
|
|
self.sigma_min = self.sigmas[-1].item()
|
|
self.sigma_max = self.sigmas[0].item()
|
|
|
|
@property
|
|
def step_index(self):
|
|
"""
|
|
The index counter for current timestep. It will increase 1 after each scheduler step.
|
|
"""
|
|
return self._step_index
|
|
|
|
@property
|
|
def begin_index(self):
|
|
"""
|
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
|
"""
|
|
return self._begin_index
|
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0):
|
|
"""
|
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
|
|
|
Args:
|
|
begin_index (`int`):
|
|
The begin index for the scheduler.
|
|
"""
|
|
self._begin_index = begin_index
|
|
|
|
def scale_noise(
|
|
self,
|
|
sample: torch.FloatTensor,
|
|
timestep: Union[float, torch.FloatTensor],
|
|
noise: Optional[torch.FloatTensor] = None,
|
|
) -> torch.FloatTensor:
|
|
"""
|
|
Forward process in flow-matching
|
|
|
|
Args:
|
|
sample (`torch.FloatTensor`):
|
|
The input sample.
|
|
timestep (`int`, *optional*):
|
|
The current timestep in the diffusion chain.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`:
|
|
A scaled input sample.
|
|
"""
|
|
|
|
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
|
|
|
|
if sample.device.type == "mps" and torch.is_floating_point(timestep):
|
|
|
|
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
|
timestep = timestep.to(sample.device, dtype=torch.float32)
|
|
else:
|
|
schedule_timesteps = self.timesteps.to(sample.device)
|
|
timestep = timestep.to(sample.device)
|
|
|
|
|
|
if self.begin_index is None:
|
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
|
|
elif self.step_index is not None:
|
|
|
|
step_indices = [self.step_index] * timestep.shape[0]
|
|
else:
|
|
|
|
step_indices = [self.begin_index] * timestep.shape[0]
|
|
|
|
sigma = sigmas[step_indices].flatten()
|
|
while len(sigma.shape) < len(sample.shape):
|
|
sigma = sigma.unsqueeze(-1)
|
|
|
|
sample = sigma * noise + (1.0 - sigma) * sample
|
|
|
|
return sample
|
|
|
|
def _sigma_to_t(self, sigma):
|
|
return sigma * self.config.num_train_timesteps
|
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
|
|
|
def set_timesteps(
|
|
self,
|
|
num_inference_steps: int = None,
|
|
device: Union[str, torch.device] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
mu: Optional[float] = None,
|
|
):
|
|
"""
|
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
|
|
|
Args:
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
"""
|
|
|
|
if self.config.use_dynamic_shifting and mu is None:
|
|
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
|
|
|
|
if sigmas is None:
|
|
self.num_inference_steps = num_inference_steps
|
|
timesteps = np.linspace(
|
|
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
|
)
|
|
|
|
sigmas = timesteps / self.config.num_train_timesteps
|
|
|
|
if self.config.use_dynamic_shifting:
|
|
sigmas = self.time_shift(mu, 1.0, sigmas)
|
|
else:
|
|
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
|
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
|
timesteps = sigmas * self.config.num_train_timesteps
|
|
|
|
self.timesteps = timesteps.to(device=device)
|
|
self.sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
|
|
|
|
self._step_index = None
|
|
self._begin_index = None
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
|
if schedule_timesteps is None:
|
|
schedule_timesteps = self.timesteps
|
|
|
|
indices = (schedule_timesteps == timestep).nonzero()
|
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0
|
|
|
|
return indices[pos].item()
|
|
|
|
def _init_step_index(self, timestep):
|
|
if self.begin_index is None:
|
|
if isinstance(timestep, torch.Tensor):
|
|
timestep = timestep.to(self.timesteps.device)
|
|
self._step_index = self.index_for_timestep(timestep)
|
|
else:
|
|
self._step_index = self._begin_index
|
|
|
|
def step(
|
|
self,
|
|
model_output: torch.FloatTensor,
|
|
timestep: Union[float, torch.FloatTensor],
|
|
sample: torch.FloatTensor,
|
|
s_churn: float = 0.0,
|
|
s_tmin: float = 0.0,
|
|
s_tmax: float = float("inf"),
|
|
s_noise: float = 1.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
|
"""
|
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
|
process from the learned model outputs (most often the predicted noise).
|
|
|
|
Args:
|
|
model_output (`torch.FloatTensor`):
|
|
The direct output from learned diffusion model.
|
|
timestep (`float`):
|
|
The current discrete timestep in the diffusion chain.
|
|
sample (`torch.FloatTensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
s_churn (`float`):
|
|
s_tmin (`float`):
|
|
s_tmax (`float`):
|
|
s_noise (`float`, defaults to 1.0):
|
|
Scaling factor for noise added to the sample.
|
|
generator (`torch.Generator`, *optional*):
|
|
A random number generator.
|
|
return_dict (`bool`):
|
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
|
tuple.
|
|
|
|
Returns:
|
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
|
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
|
"""
|
|
|
|
if (
|
|
isinstance(timestep, int)
|
|
or isinstance(timestep, torch.IntTensor)
|
|
or isinstance(timestep, torch.LongTensor)
|
|
):
|
|
raise ValueError(
|
|
(
|
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
|
" one of the `scheduler.timesteps` as a timestep."
|
|
),
|
|
)
|
|
|
|
if self.step_index is None:
|
|
self._init_step_index(timestep)
|
|
|
|
|
|
sample = sample.to(torch.float32)
|
|
|
|
sigma = self.sigmas[self.step_index]
|
|
sigma_next = self.sigmas[self.step_index + 1]
|
|
|
|
prev_sample = sample + (sigma_next - sigma) * model_output
|
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype)
|
|
|
|
|
|
self._step_index += 1
|
|
|
|
if not return_dict:
|
|
return (prev_sample,)
|
|
|
|
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
|
|
|
|
def __len__(self):
|
|
return self.config.num_train_timesteps
|
|
|