|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import trimesh
|
|
from PIL import Image
|
|
|
|
from .camera_utils import (
|
|
transform_pos,
|
|
get_mv_matrix,
|
|
get_orthographic_projection_matrix,
|
|
get_perspective_projection_matrix,
|
|
)
|
|
from .mesh_processor import meshVerticeInpaint
|
|
from .mesh_utils import load_mesh, save_mesh
|
|
|
|
|
|
def stride_from_shape(shape):
|
|
stride = [1]
|
|
for x in reversed(shape[1:]):
|
|
stride.append(stride[-1] * x)
|
|
return list(reversed(stride))
|
|
|
|
|
|
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
|
|
|
|
|
|
|
|
|
|
|
|
D = indices.shape[-1]
|
|
C = input.shape[-1]
|
|
size = input.shape[:-1]
|
|
stride = stride_from_shape(size)
|
|
|
|
assert len(size) == D
|
|
|
|
input = input.view(-1, C)
|
|
count = count.view(-1, 1)
|
|
|
|
flatten_indices = (indices * torch.tensor(stride,
|
|
dtype=torch.long, device=indices.device)).sum(-1)
|
|
|
|
if weights is None:
|
|
weights = torch.ones_like(values[..., :1])
|
|
|
|
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
|
|
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
|
|
|
|
return input.view(*size, C), count.view(*size, 1)
|
|
|
|
|
|
def linear_grid_put_2d(H, W, coords, values, return_count=False):
|
|
|
|
|
|
|
|
C = values.shape[-1]
|
|
|
|
indices = coords * torch.tensor(
|
|
[H - 1, W - 1], dtype=torch.float32, device=coords.device
|
|
)
|
|
indices_00 = indices.floor().long()
|
|
indices_00[:, 0].clamp_(0, H - 2)
|
|
indices_00[:, 1].clamp_(0, W - 2)
|
|
indices_01 = indices_00 + torch.tensor(
|
|
[0, 1], dtype=torch.long, device=indices.device
|
|
)
|
|
indices_10 = indices_00 + torch.tensor(
|
|
[1, 0], dtype=torch.long, device=indices.device
|
|
)
|
|
indices_11 = indices_00 + torch.tensor(
|
|
[1, 1], dtype=torch.long, device=indices.device
|
|
)
|
|
|
|
h = indices[..., 0] - indices_00[..., 0].float()
|
|
w = indices[..., 1] - indices_00[..., 1].float()
|
|
w_00 = (1 - h) * (1 - w)
|
|
w_01 = (1 - h) * w
|
|
w_10 = h * (1 - w)
|
|
w_11 = h * w
|
|
|
|
result = torch.zeros(H, W, C, device=values.device,
|
|
dtype=values.dtype)
|
|
count = torch.zeros(H, W, 1, device=values.device,
|
|
dtype=values.dtype)
|
|
weights = torch.ones_like(values[..., :1])
|
|
|
|
result, count = scatter_add_nd_with_count(
|
|
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1))
|
|
result, count = scatter_add_nd_with_count(
|
|
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1))
|
|
result, count = scatter_add_nd_with_count(
|
|
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1))
|
|
result, count = scatter_add_nd_with_count(
|
|
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1))
|
|
|
|
if return_count:
|
|
return result, count
|
|
|
|
mask = (count.squeeze(-1) > 0)
|
|
result[mask] = result[mask] / count[mask].repeat(1, C)
|
|
|
|
return result
|
|
|
|
|
|
class MeshRender():
|
|
def __init__(
|
|
self,
|
|
camera_distance=1.45, camera_type='orth',
|
|
default_resolution=1024, texture_size=1024,
|
|
use_antialias=True, max_mip_level=None, filter_mode='linear',
|
|
bake_mode='linear', raster_mode='cr', device='cuda'):
|
|
|
|
self.device = device
|
|
|
|
self.set_default_render_resolution(default_resolution)
|
|
self.set_default_texture_resolution(texture_size)
|
|
|
|
self.camera_distance = camera_distance
|
|
self.use_antialias = use_antialias
|
|
self.max_mip_level = max_mip_level
|
|
self.filter_mode = filter_mode
|
|
|
|
self.bake_angle_thres = 75
|
|
self.bake_unreliable_kernel_size = int(
|
|
(2 / 512) * max(self.default_resolution[0], self.default_resolution[1]))
|
|
self.bake_mode = bake_mode
|
|
|
|
self.raster_mode = raster_mode
|
|
if self.raster_mode == 'cr':
|
|
import custom_rasterizer as cr
|
|
self.raster = cr
|
|
else:
|
|
raise f'No raster named {self.raster_mode}'
|
|
|
|
if camera_type == 'orth':
|
|
self.ortho_scale = 1.2
|
|
self.camera_proj_mat = get_orthographic_projection_matrix(
|
|
left=-self.ortho_scale * 0.5, right=self.ortho_scale * 0.5,
|
|
bottom=-self.ortho_scale * 0.5, top=self.ortho_scale * 0.5,
|
|
near=0.1, far=100
|
|
)
|
|
elif camera_type == 'perspective':
|
|
self.camera_proj_mat = get_perspective_projection_matrix(
|
|
49.13, self.default_resolution[1] / self.default_resolution[0],
|
|
0.01, 100.0
|
|
)
|
|
else:
|
|
raise f'No camera type {camera_type}'
|
|
|
|
def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
|
|
|
|
if self.raster_mode == 'cr':
|
|
rast_out_db = None
|
|
if pos.dim() == 2:
|
|
pos = pos.unsqueeze(0)
|
|
findices, barycentric = self.raster.rasterize(pos, tri, resolution)
|
|
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1)
|
|
rast_out = rast_out.unsqueeze(0)
|
|
else:
|
|
raise f'No raster named {self.raster_mode}'
|
|
|
|
return rast_out, rast_out_db
|
|
|
|
def raster_interpolate(self, uv, rast_out, uv_idx, rast_db=None, diff_attrs=None):
|
|
|
|
if self.raster_mode == 'cr':
|
|
textd = None
|
|
barycentric = rast_out[0, ..., :-1]
|
|
findices = rast_out[0, ..., -1]
|
|
if uv.dim() == 2:
|
|
uv = uv.unsqueeze(0)
|
|
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx)
|
|
else:
|
|
raise f'No raster named {self.raster_mode}'
|
|
|
|
return textc, textd
|
|
|
|
def raster_texture(self, tex, uv, uv_da=None, mip_level_bias=None, mip=None, filter_mode='auto',
|
|
boundary_mode='wrap', max_mip_level=None):
|
|
|
|
if self.raster_mode == 'cr':
|
|
raise f'Texture is not implemented in cr'
|
|
else:
|
|
raise f'No raster named {self.raster_mode}'
|
|
|
|
return color
|
|
|
|
def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0):
|
|
|
|
if self.raster_mode == 'cr':
|
|
|
|
color = color
|
|
else:
|
|
raise f'No raster named {self.raster_mode}'
|
|
|
|
return color
|
|
|
|
def load_mesh(
|
|
self,
|
|
mesh,
|
|
scale_factor=1.15,
|
|
auto_center=True,
|
|
):
|
|
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh)
|
|
self.mesh_copy = mesh
|
|
self.set_mesh(vtx_pos, pos_idx,
|
|
vtx_uv=vtx_uv, uv_idx=uv_idx,
|
|
scale_factor=scale_factor, auto_center=auto_center
|
|
)
|
|
if texture_data is not None:
|
|
self.set_texture(texture_data)
|
|
|
|
def save_mesh(self):
|
|
texture_data = self.get_texture()
|
|
texture_data = Image.fromarray((texture_data * 255).astype(np.uint8))
|
|
return save_mesh(self.mesh_copy, texture_data)
|
|
|
|
def set_mesh(
|
|
self,
|
|
vtx_pos, pos_idx,
|
|
vtx_uv=None, uv_idx=None,
|
|
scale_factor=1.15, auto_center=True
|
|
):
|
|
|
|
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device).float()
|
|
self.pos_idx = torch.from_numpy(pos_idx).to(self.device).to(torch.int)
|
|
if (vtx_uv is not None) and (uv_idx is not None):
|
|
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device).float()
|
|
self.uv_idx = torch.from_numpy(uv_idx).to(self.device).to(torch.int)
|
|
else:
|
|
self.vtx_uv = None
|
|
self.uv_idx = None
|
|
|
|
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]]
|
|
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]]
|
|
if (vtx_uv is not None) and (uv_idx is not None):
|
|
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1]
|
|
|
|
if auto_center:
|
|
max_bb = (self.vtx_pos - 0).max(0)[0]
|
|
min_bb = (self.vtx_pos - 0).min(0)[0]
|
|
center = (max_bb + min_bb) / 2
|
|
scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0
|
|
self.vtx_pos = (self.vtx_pos - center) * \
|
|
(scale_factor / float(scale))
|
|
self.scale_factor = scale_factor
|
|
|
|
def set_texture(self, tex):
|
|
if isinstance(tex, np.ndarray):
|
|
tex = Image.fromarray((tex * 255).astype(np.uint8))
|
|
elif isinstance(tex, torch.Tensor):
|
|
tex = tex.cpu().numpy()
|
|
tex = Image.fromarray((tex * 255).astype(np.uint8))
|
|
|
|
tex = tex.resize(self.texture_size).convert('RGB')
|
|
tex = np.array(tex) / 255.0
|
|
self.tex = torch.from_numpy(tex).to(self.device)
|
|
self.tex = self.tex.float()
|
|
|
|
def set_default_render_resolution(self, default_resolution):
|
|
if isinstance(default_resolution, int):
|
|
default_resolution = (default_resolution, default_resolution)
|
|
self.default_resolution = default_resolution
|
|
|
|
def set_default_texture_resolution(self, texture_size):
|
|
if isinstance(texture_size, int):
|
|
texture_size = (texture_size, texture_size)
|
|
self.texture_size = texture_size
|
|
|
|
def get_mesh(self):
|
|
vtx_pos = self.vtx_pos.cpu().numpy()
|
|
pos_idx = self.pos_idx.cpu().numpy()
|
|
vtx_uv = self.vtx_uv.cpu().numpy()
|
|
uv_idx = self.uv_idx.cpu().numpy()
|
|
|
|
|
|
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]]
|
|
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]]
|
|
|
|
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1]
|
|
return vtx_pos, pos_idx, vtx_uv, uv_idx
|
|
|
|
def get_texture(self):
|
|
return self.tex.cpu().numpy()
|
|
|
|
def to(self, device):
|
|
self.device = device
|
|
|
|
for attr_name in dir(self):
|
|
attr_value = getattr(self, attr_name)
|
|
if isinstance(attr_value, torch.Tensor):
|
|
setattr(self, attr_name, attr_value.to(self.device))
|
|
|
|
def color_rgb_to_srgb(self, image):
|
|
if isinstance(image, Image.Image):
|
|
image_rgb = torch.tesnor(
|
|
np.array(image) /
|
|
255.0).float().to(
|
|
self.device)
|
|
elif isinstance(image, np.ndarray):
|
|
image_rgb = torch.tensor(image).float()
|
|
else:
|
|
image_rgb = image.to(self.device)
|
|
|
|
image_srgb = torch.where(
|
|
image_rgb <= 0.0031308,
|
|
12.92 * image_rgb,
|
|
1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055
|
|
)
|
|
|
|
if isinstance(image, Image.Image):
|
|
image_srgb = Image.fromarray(
|
|
(image_srgb.cpu().numpy() *
|
|
255).astype(
|
|
np.uint8))
|
|
elif isinstance(image, np.ndarray):
|
|
image_srgb = image_srgb.cpu().numpy()
|
|
else:
|
|
image_srgb = image_srgb.to(image.device)
|
|
|
|
return image_srgb
|
|
|
|
def _render(
|
|
self,
|
|
glctx,
|
|
mvp,
|
|
pos,
|
|
pos_idx,
|
|
uv,
|
|
uv_idx,
|
|
tex,
|
|
resolution,
|
|
max_mip_level,
|
|
keep_alpha,
|
|
filter_mode
|
|
):
|
|
pos_clip = transform_pos(mvp, pos)
|
|
if isinstance(resolution, (int, float)):
|
|
resolution = [resolution, resolution]
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
glctx, pos_clip, pos_idx, resolution=resolution)
|
|
|
|
tex = tex.contiguous()
|
|
if filter_mode == 'linear-mipmap-linear':
|
|
texc, texd = self.raster_interpolate(
|
|
uv[None, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all')
|
|
color = self.raster_texture(
|
|
tex[None, ...], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level)
|
|
else:
|
|
texc, _ = self.raster_interpolate(uv[None, ...], rast_out, uv_idx)
|
|
color = self.raster_texture(tex[None, ...], texc, filter_mode=filter_mode)
|
|
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
|
|
color = color * visible_mask
|
|
if self.use_antialias:
|
|
color = self.raster_antialias(color, rast_out, pos_clip, pos_idx)
|
|
|
|
if keep_alpha:
|
|
color = torch.cat([color, visible_mask], dim=-1)
|
|
return color[0, ...]
|
|
|
|
def render(
|
|
self,
|
|
elev,
|
|
azim,
|
|
camera_distance=None,
|
|
center=None,
|
|
resolution=None,
|
|
tex=None,
|
|
keep_alpha=True,
|
|
bgcolor=None,
|
|
filter_mode=None,
|
|
return_type='th'
|
|
):
|
|
|
|
proj = self.camera_proj_mat
|
|
r_mv = get_mv_matrix(
|
|
elev=elev,
|
|
azim=azim,
|
|
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
|
|
center=center)
|
|
r_mvp = np.matmul(proj, r_mv).astype(np.float32)
|
|
if tex is not None:
|
|
if isinstance(tex, Image.Image):
|
|
tex = torch.tensor(np.array(tex) / 255.0)
|
|
elif isinstance(tex, np.ndarray):
|
|
tex = torch.tensor(tex)
|
|
if tex.dim() == 2:
|
|
tex = tex.unsqueeze(-1)
|
|
tex = tex.float().to(self.device)
|
|
image = self._render(r_mvp, self.vtx_pos, self.pos_idx, self.vtx_uv, self.uv_idx,
|
|
self.tex if tex is None else tex,
|
|
self.default_resolution if resolution is None else resolution,
|
|
self.max_mip_level, True, filter_mode if filter_mode else self.filter_mode)
|
|
mask = (image[..., [-1]] == 1).float()
|
|
if bgcolor is None:
|
|
bgcolor = [0 for _ in range(image.shape[-1] - 1)]
|
|
image = image * mask + (1 - mask) * \
|
|
torch.tensor(bgcolor + [0]).to(self.device)
|
|
if keep_alpha == False:
|
|
image = image[..., :-1]
|
|
if return_type == 'np':
|
|
image = image.cpu().numpy()
|
|
elif return_type == 'pl':
|
|
image = image.squeeze(-1).cpu().numpy() * 255
|
|
image = Image.fromarray(image.astype(np.uint8))
|
|
return image
|
|
|
|
def render_normal(
|
|
self,
|
|
elev,
|
|
azim,
|
|
camera_distance=None,
|
|
center=None,
|
|
resolution=None,
|
|
bg_color=[1, 1, 1],
|
|
use_abs_coor=False,
|
|
normalize_rgb=True,
|
|
return_type='th'
|
|
):
|
|
|
|
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
|
|
if resolution is None:
|
|
resolution = self.default_resolution
|
|
if isinstance(resolution, (int, float)):
|
|
resolution = [resolution, resolution]
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
pos_clip, self.pos_idx, resolution=resolution)
|
|
|
|
if use_abs_coor:
|
|
mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :]
|
|
else:
|
|
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
|
|
mesh_triangles = pos_camera[self.pos_idx[:, :3], :]
|
|
face_normals = F.normalize(
|
|
torch.cross(mesh_triangles[:,
|
|
1,
|
|
:] - mesh_triangles[:,
|
|
0,
|
|
:],
|
|
mesh_triangles[:,
|
|
2,
|
|
:] - mesh_triangles[:,
|
|
0,
|
|
:],
|
|
dim=-1),
|
|
dim=-1)
|
|
|
|
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0],
|
|
faces=self.pos_idx.cpu(),
|
|
face_normals=face_normals.cpu(), )
|
|
vertex_normals = torch.from_numpy(
|
|
vertex_normals).float().to(self.device).contiguous()
|
|
|
|
|
|
normal, _ = self.raster_interpolate(
|
|
vertex_normals[None, ...], rast_out, self.pos_idx)
|
|
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
|
|
normal = normal * visible_mask + \
|
|
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 -
|
|
visible_mask)
|
|
|
|
if normalize_rgb:
|
|
normal = (normal + 1) * 0.5
|
|
if self.use_antialias:
|
|
normal = self.raster_antialias(normal, rast_out, pos_clip, self.pos_idx)
|
|
|
|
image = normal[0, ...]
|
|
if return_type == 'np':
|
|
image = image.cpu().numpy()
|
|
elif return_type == 'pl':
|
|
image = image.cpu().numpy() * 255
|
|
image = Image.fromarray(image.astype(np.uint8))
|
|
|
|
return image
|
|
|
|
def convert_normal_map(self, image):
|
|
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
mask = (image == [255, 255, 255]).all(axis=-1)
|
|
|
|
image = (image / 255.0) * 2.0 - 1.0
|
|
|
|
image[..., [1]] = -image[..., [1]]
|
|
image[..., [1, 2]] = image[..., [2, 1]]
|
|
image[..., [0]] = -image[..., [0]]
|
|
|
|
image = (image + 1.0) * 0.5
|
|
|
|
image = (image * 255).astype(np.uint8)
|
|
image[mask] = [127, 127, 255]
|
|
|
|
return Image.fromarray(image)
|
|
|
|
def get_pos_from_mvp(self, elev, azim, camera_distance, center):
|
|
proj = self.camera_proj_mat
|
|
r_mv = get_mv_matrix(
|
|
elev=elev,
|
|
azim=azim,
|
|
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
|
|
center=center)
|
|
|
|
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
|
|
pos_clip = transform_pos(proj, pos_camera)
|
|
|
|
return pos_camera, pos_clip
|
|
|
|
def render_depth(
|
|
self,
|
|
elev,
|
|
azim,
|
|
camera_distance=None,
|
|
center=None,
|
|
resolution=None,
|
|
return_type='th'
|
|
):
|
|
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
|
|
|
|
if resolution is None:
|
|
resolution = self.default_resolution
|
|
if isinstance(resolution, (int, float)):
|
|
resolution = [resolution, resolution]
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
pos_clip, self.pos_idx, resolution=resolution)
|
|
|
|
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
|
|
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
|
|
|
|
|
|
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
|
|
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
|
|
depth_max, depth_min = depth[visible_mask >
|
|
0].max(), depth[visible_mask > 0].min()
|
|
depth = (depth - depth_min) / (depth_max - depth_min)
|
|
|
|
depth = depth * visible_mask
|
|
if self.use_antialias:
|
|
depth = self.raster_antialias(depth, rast_out, pos_clip, self.pos_idx)
|
|
|
|
image = depth[0, ...]
|
|
if return_type == 'np':
|
|
image = image.cpu().numpy()
|
|
elif return_type == 'pl':
|
|
image = image.squeeze(-1).cpu().numpy() * 255
|
|
image = Image.fromarray(image.astype(np.uint8))
|
|
return image
|
|
|
|
def render_position(self, elev, azim, camera_distance=None, center=None,
|
|
resolution=None, bg_color=[1, 1, 1], return_type='th'):
|
|
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center)
|
|
if resolution is None:
|
|
resolution = self.default_resolution
|
|
if isinstance(resolution, (int, float)):
|
|
resolution = [resolution, resolution]
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
pos_clip, self.pos_idx, resolution=resolution)
|
|
|
|
tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor
|
|
tex_position = tex_position.contiguous()
|
|
|
|
|
|
position, _ = self.raster_interpolate(
|
|
tex_position[None, ...], rast_out, self.pos_idx)
|
|
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
|
|
|
|
position = position * visible_mask + \
|
|
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 -
|
|
visible_mask)
|
|
if self.use_antialias:
|
|
position = self.raster_antialias(position, rast_out, pos_clip, self.pos_idx)
|
|
|
|
image = position[0, ...]
|
|
|
|
if return_type == 'np':
|
|
image = image.cpu().numpy()
|
|
elif return_type == 'pl':
|
|
image = image.squeeze(-1).cpu().numpy() * 255
|
|
image = Image.fromarray(image.astype(np.uint8))
|
|
return image
|
|
|
|
def render_uvpos(self, return_type='th'):
|
|
image = self.uv_feature_map(self.vtx_pos * 0.5 + 0.5)
|
|
if return_type == 'np':
|
|
image = image.cpu().numpy()
|
|
elif return_type == 'pl':
|
|
image = image.cpu().numpy() * 255
|
|
image = Image.fromarray(image.astype(np.uint8))
|
|
return image
|
|
|
|
def uv_feature_map(self, vert_feat, bg=None):
|
|
vtx_uv = self.vtx_uv * 2 - 1.0
|
|
vtx_uv = torch.cat(
|
|
[vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0)
|
|
vtx_uv[..., -1] = 1
|
|
uv_idx = self.uv_idx
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
vtx_uv, uv_idx, resolution=self.texture_size)
|
|
feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx)
|
|
feat_map = feat_map[0, ...]
|
|
if bg is not None:
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
|
|
feat_map[visible_mask == 0] = bg
|
|
return feat_map
|
|
|
|
def render_sketch_from_geometry(self, normal_image, depth_image):
|
|
normal_image_np = normal_image.cpu().numpy()
|
|
depth_image_np = depth_image.cpu().numpy()
|
|
|
|
normal_image_np = (normal_image_np * 255).astype(np.uint8)
|
|
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
|
normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY)
|
|
|
|
normal_edges = cv2.Canny(normal_image_np, 80, 150)
|
|
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
|
|
|
combined_edges = np.maximum(normal_edges, depth_edges)
|
|
|
|
sketch_image = torch.from_numpy(combined_edges).to(
|
|
normal_image.device).float() / 255.0
|
|
sketch_image = sketch_image.unsqueeze(-1)
|
|
|
|
return sketch_image
|
|
|
|
def render_sketch_from_depth(self, depth_image):
|
|
depth_image_np = depth_image.cpu().numpy()
|
|
depth_image_np = (depth_image_np * 255).astype(np.uint8)
|
|
depth_edges = cv2.Canny(depth_image_np, 30, 80)
|
|
combined_edges = depth_edges
|
|
sketch_image = torch.from_numpy(combined_edges).to(
|
|
depth_image.device).float() / 255.0
|
|
sketch_image = sketch_image.unsqueeze(-1)
|
|
return sketch_image
|
|
|
|
def back_project(self, image, elev, azim,
|
|
camera_distance=None, center=None, method=None):
|
|
if isinstance(image, Image.Image):
|
|
image = torch.tensor(np.array(image) / 255.0)
|
|
elif isinstance(image, np.ndarray):
|
|
image = torch.tensor(image)
|
|
if image.dim() == 2:
|
|
image = image.unsqueeze(-1)
|
|
image = image.float().to(self.device)
|
|
resolution = image.shape[:2]
|
|
channel = image.shape[-1]
|
|
texture = torch.zeros(self.texture_size + (channel,)).to(self.device)
|
|
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device)
|
|
|
|
proj = self.camera_proj_mat
|
|
r_mv = get_mv_matrix(
|
|
elev=elev,
|
|
azim=azim,
|
|
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
|
|
center=center)
|
|
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
|
|
pos_clip = transform_pos(proj, pos_camera)
|
|
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
|
|
v0 = pos_camera[self.pos_idx[:, 0], :]
|
|
v1 = pos_camera[self.pos_idx[:, 1], :]
|
|
v2 = pos_camera[self.pos_idx[:, 2], :]
|
|
face_normals = F.normalize(
|
|
torch.cross(
|
|
v1 - v0,
|
|
v2 - v0,
|
|
dim=-1),
|
|
dim=-1)
|
|
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0],
|
|
faces=self.pos_idx.cpu(),
|
|
face_normals=face_normals.cpu(), )
|
|
vertex_normals = torch.from_numpy(
|
|
vertex_normals).float().to(self.device).contiguous()
|
|
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
|
|
rast_out, rast_out_db = self.raster_rasterize(
|
|
pos_clip, self.pos_idx, resolution=resolution)
|
|
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
|
|
|
|
normal, _ = self.raster_interpolate(
|
|
vertex_normals[None, ...], rast_out, self.pos_idx)
|
|
normal = normal[0, ...]
|
|
uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx)
|
|
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
|
|
depth = depth[0, ...]
|
|
|
|
depth_max, depth_min = depth[visible_mask >
|
|
0].max(), depth[visible_mask > 0].min()
|
|
depth_normalized = (depth - depth_min) / (depth_max - depth_min)
|
|
depth_image = depth_normalized * visible_mask
|
|
|
|
sketch_image = self.render_sketch_from_depth(depth_image)
|
|
|
|
lookat = torch.tensor([[0, 0, -1]], device=self.device)
|
|
cos_image = torch.nn.functional.cosine_similarity(
|
|
lookat, normal.view(-1, 3))
|
|
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1)
|
|
|
|
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi)
|
|
cos_image[cos_image < cos_thres] = 0
|
|
|
|
|
|
kernel_size = self.bake_unreliable_kernel_size * 2 + 1
|
|
kernel = torch.ones(
|
|
(1, 1, kernel_size, kernel_size), dtype=torch.float32).to(
|
|
sketch_image.device)
|
|
|
|
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float()
|
|
visible_mask = F.conv2d(
|
|
1.0 - visible_mask,
|
|
kernel,
|
|
padding=kernel_size // 2)
|
|
visible_mask = 1.0 - (visible_mask > 0).float()
|
|
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0)
|
|
|
|
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
|
|
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2)
|
|
sketch_image = (sketch_image > 0).float()
|
|
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
|
|
visible_mask = visible_mask * (sketch_image < 0.5)
|
|
|
|
cos_image[visible_mask == 0] = 0
|
|
|
|
method = self.bake_mode if method is None else method
|
|
|
|
if method == 'linear':
|
|
proj_mask = (visible_mask != 0).view(-1)
|
|
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
|
|
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
|
|
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
|
|
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask]
|
|
|
|
texture = linear_grid_put_2d(
|
|
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image)
|
|
cos_map = linear_grid_put_2d(
|
|
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image)
|
|
boundary_map = linear_grid_put_2d(
|
|
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image)
|
|
else:
|
|
raise f'No bake mode {method}'
|
|
|
|
return texture, cos_map, boundary_map
|
|
|
|
def bake_texture(self, colors, elevs, azims,
|
|
camera_distance=None, center=None, exp=6, weights=None):
|
|
for i in range(len(colors)):
|
|
if isinstance(colors[i], Image.Image):
|
|
colors[i] = torch.tensor(
|
|
np.array(
|
|
colors[i]) / 255.0,
|
|
device=self.device).float()
|
|
if weights is None:
|
|
weights = [1.0 for _ in range(colors)]
|
|
textures = []
|
|
cos_maps = []
|
|
for color, elev, azim, weight in zip(colors, elevs, azims, weights):
|
|
texture, cos_map, _ = self.back_project(
|
|
color, elev, azim, camera_distance, center)
|
|
cos_map = weight * (cos_map ** exp)
|
|
textures.append(texture)
|
|
cos_maps.append(cos_map)
|
|
|
|
texture_merge, trust_map_merge = self.fast_bake_texture(
|
|
textures, cos_maps)
|
|
return texture_merge, trust_map_merge
|
|
|
|
@torch.no_grad()
|
|
def fast_bake_texture(self, textures, cos_maps):
|
|
|
|
channel = textures[0].shape[-1]
|
|
texture_merge = torch.zeros(
|
|
self.texture_size + (channel,)).to(self.device)
|
|
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device)
|
|
for texture, cos_map in zip(textures, cos_maps):
|
|
view_sum = (cos_map > 0).sum()
|
|
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
|
|
if painted_sum / view_sum > 0.99:
|
|
continue
|
|
texture_merge += texture * cos_map
|
|
trust_map_merge += cos_map
|
|
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1E-8)
|
|
|
|
return texture_merge, trust_map_merge > 1E-8
|
|
|
|
def uv_inpaint(self, texture, mask):
|
|
|
|
if isinstance(texture, torch.Tensor):
|
|
texture_np = texture.cpu().numpy()
|
|
elif isinstance(texture, np.ndarray):
|
|
texture_np = texture
|
|
elif isinstance(texture, Image.Image):
|
|
texture_np = np.array(texture) / 255.0
|
|
|
|
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh()
|
|
|
|
texture_np, mask = meshVerticeInpaint(
|
|
texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx)
|
|
|
|
texture_np = cv2.inpaint(
|
|
(texture_np *
|
|
255).astype(
|
|
np.uint8),
|
|
255 -
|
|
mask,
|
|
3,
|
|
cv2.INPAINT_NS)
|
|
|
|
return texture_np
|
|
|