|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
from diffusers import EulerAncestralDiscreteScheduler
|
|
from diffusers import StableDiffusionControlNetPipeline, StableDiffusionXLControlNetImg2ImgPipeline, ControlNetModel, \
|
|
AutoencoderKL
|
|
|
|
|
|
class Img2img_Control_Ip_adapter:
|
|
def __init__(self, device):
|
|
controlnet = ControlNetModel.from_pretrained('lllyasviel/control_v11f1p_sd15_depth', torch_dtype=torch.float16,
|
|
variant="fp16", use_safetensors=True)
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
'runwayml/stable-diffusion-v1-5', controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
|
|
)
|
|
pipe.load_ip_adapter('h94/IP-Adapter', subfolder="models", weight_name="ip-adapter-plus_sd15.safetensors")
|
|
pipe.set_ip_adapter_scale(0.7)
|
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
self.pipe = pipe.to(device)
|
|
|
|
def __call__(
|
|
self,
|
|
prompt,
|
|
control_image,
|
|
ip_adapter_image,
|
|
negative_prompt,
|
|
height=512,
|
|
width=512,
|
|
num_inference_steps=20,
|
|
guidance_scale=8.0,
|
|
controlnet_conditioning_scale=1.0,
|
|
output_type="pil",
|
|
**kwargs,
|
|
):
|
|
results = self.pipe(
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
image=control_image,
|
|
ip_adapter_image=ip_adapter_image,
|
|
generator=torch.manual_seed(42),
|
|
seed=42,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
strength=1,
|
|
|
|
height=height,
|
|
width=width,
|
|
output_type=output_type,
|
|
**kwargs,
|
|
).images[0]
|
|
return results
|
|
|
|
|
|
|
|
|
|
class HesModel:
|
|
def __init__(self, ):
|
|
controlnet_depth = ControlNetModel.from_pretrained(
|
|
'diffusers/controlnet-depth-sdxl-1.0',
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
use_safetensors=True
|
|
)
|
|
self.pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
|
'stabilityai/stable-diffusion-xl-base-1.0',
|
|
torch_dtype=torch.float16,
|
|
variant="fp16",
|
|
controlnet=controlnet_depth,
|
|
use_safetensors=True,
|
|
)
|
|
self.pipe.vae = AutoencoderKL.from_pretrained(
|
|
'madebyollin/sdxl-vae-fp16-fix',
|
|
torch_dtype=torch.float16
|
|
)
|
|
|
|
self.pipe.load_ip_adapter('h94/IP-Adapter', subfolder="sdxl_models", weight_name="ip-adapter_sdxl.safetensors")
|
|
self.pipe.set_ip_adapter_scale(0.7)
|
|
self.pipe.to("cuda")
|
|
|
|
def __call__(self,
|
|
init_image,
|
|
control_image,
|
|
ip_adapter_image=None,
|
|
prompt='3D image',
|
|
negative_prompt='2D image',
|
|
seed=42,
|
|
strength=0.8,
|
|
num_inference_steps=40,
|
|
guidance_scale=7.5,
|
|
controlnet_conditioning_scale=0.5,
|
|
**kwargs
|
|
):
|
|
image = self.pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
control_image=control_image,
|
|
ip_adapter_image=ip_adapter_image,
|
|
negative_prompt=negative_prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
strength=strength,
|
|
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
|
seed=seed,
|
|
**kwargs
|
|
).images[0]
|
|
return image
|
|
|