File size: 5,631 Bytes
20980dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from transformers import pipeline
from scipy.ndimage import gaussian_filter

def preprocess_image(image, target_size=(512, 512)):
    """Preprocess the input image"""
    if isinstance(image, str):
        image = Image.open(image)
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    # Calculate aspect ratio preserving resize
    aspect_ratio = image.size[0] / image.size[1]
    if aspect_ratio > 1:
        new_width = int(target_size[0] * aspect_ratio)
        new_height = target_size[1]
    else:
        new_width = target_size[0]
        new_height = int(target_size[1] / aspect_ratio)

    preprocess = transforms.Compose([
        transforms.Resize((new_height, new_width)),
        transforms.CenterCrop(target_size),
    ])
    
    return preprocess(image)

def estimate_depth(image, pipe):
    """Estimate depth using the Depth-Anything model"""
    depth_output = pipe(image)
    depth_map = depth_output["depth"]
    depth_map = np.array(depth_map) / 16.67
    return depth_map

def apply_depth_aware_blur(image, depth_map, max_sigma, min_sigma):
    """Apply variable Gaussian blur based on depth values"""
    image_array = np.array(image)
    blurred = np.zeros_like(image_array, dtype=np.float32)
    
    # Calculate sigma for each depth value
    sigmas = np.interp(depth_map, [depth_map.min(), depth_map.max()], [min_sigma, max_sigma])
    unique_sigmas = np.unique(sigmas)
    blur_stack = {}

    # Create blurred versions for each unique sigma
    for sigma in unique_sigmas:
        if sigma > 0:
            blurred_image = np.zeros_like(image_array, dtype=np.float32)
            for channel in range(3):
                blurred_image[:, :, channel] = gaussian_filter(
                    image_array[:, :, channel].astype(np.float32),
                    sigma=sigma
                )
            blur_stack[sigma] = blurred_image

    # Combine blurred versions
    for sigma in unique_sigmas:
        if sigma > 0:
            mask = (sigmas == sigma)
            mask_3d = np.stack([mask] * 3, axis=2)
            blurred += mask_3d * blur_stack[sigma]
        else:
            mask = (sigmas == 0)
            mask_3d = np.stack([mask] * 3, axis=2)
            blurred += mask_3d * image_array

    return Image.fromarray(blurred.astype(np.uint8))

def apply_gaussian_blur(image, sigma):
    """Apply uniform Gaussian blur"""
    image_array = np.array(image)
    blurred = np.zeros_like(image_array)
    
    for channel in range(3):
        blurred[:, :, channel] = gaussian_filter(
            image_array[:, :, channel],
            sigma=sigma
        )
    
    return Image.fromarray(blurred.astype(np.uint8))

# Initialize depth estimation pipeline
pipe = pipeline(
    task="depth-estimation",
    model="depth-anything/Depth-Anything-V2-Small-hf",
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device=0 if torch.cuda.is_available() else -1
)

def process_image(image, blur_type, gaussian_sigma, lens_min_sigma, lens_max_sigma):
    """Main processing function for Gradio interface"""
    processed_image = preprocess_image(image)
    
    if blur_type == "Gaussian Blur":
        result = apply_gaussian_blur(processed_image, gaussian_sigma)
    else:  # Lens Blur
        depth_map = estimate_depth(processed_image, pipe)
        result = apply_depth_aware_blur(processed_image, depth_map, lens_max_sigma, lens_min_sigma)
    
    return result

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Blur Effects Demo")
    gr.Markdown("Apply Gaussian or Lens (Depth-aware) blur to your images")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="numpy")
            blur_type = gr.Radio(
                choices=["Gaussian Blur", "Lens Blur"],
                label="Blur Effect",
                value="Gaussian Blur"
            )
            
            with gr.Column(visible=True) as gaussian_controls:
                gaussian_sigma = gr.Slider(
                    minimum=0, maximum=20, value=5,
                    label="Gaussian Blur Sigma",
                    step=0.5
                )
            
            with gr.Column() as lens_controls:
                lens_min_sigma = gr.Slider(
                    minimum=0, maximum=10, value=0,
                    label="Minimum Blur (Near)",
                    step=0.5
                )
                lens_max_sigma = gr.Slider(
                    minimum=0, maximum=20, value=10,
                    label="Maximum Blur (Far)",
                    step=0.5
                )
            
            process_btn = gr.Button("Apply Blur")
        
        with gr.Column():
            output_image = gr.Image(label="Output Image")
    
    # Handle visibility of controls based on blur type selection
    def update_controls(blur_type):
        return {
            gaussian_controls: blur_type == "Gaussian Blur",
            lens_controls: blur_type == "Lens Blur"
        }
    
    blur_type.change(
        fn=update_controls,
        inputs=[blur_type],
        outputs=[gaussian_controls, lens_controls]
    )
    
    # Process image when button is clicked
    process_btn.click(
        fn=process_image,
        inputs=[
            input_image,
            blur_type,
            gaussian_sigma,
            lens_min_sigma,
            lens_max_sigma
        ],
        outputs=output_image
    )

# Launch the demo
demo.launch()