sjtu-deepvision's picture
Upload app.py
8895d65 verified
raw
history blame
3.8 kB
import spaces # 必须放在最前面
import os
import numpy as np
import torch
from PIL import Image
import gradio as gr
# 延迟 CUDA 初始化
weight_dtype = torch.float32
# 加载模型组件
from DAI.pipeline_all import DAIPipeline
from DAI.controlnetvae import ControlNetVAEModel
from DAI.decoder import CustomAutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, AutoTokenizer
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
# 创建推理管道
pipe = DAIPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
safety_checker=None,
scheduler=None,
feature_extractor=None,
t_start=0,
).to(device)
@spaces.GPU
def process_image(input_image):
# 将 Gradio 输入转换为 PIL 图像
input_image = Image.fromarray(input_image)
# 处理图像
pipe_out = pipe(
image=input_image,
prompt="remove glass reflection",
vae_2=vae_2,
processing_resolution=None,
)
# 将输出转换为图像
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
processed_frame = Image.fromarray(processed_frame)
return processed_frame
# 创建 Gradio 界面
def create_gradio_interface():
# 示例图像
example_images = [
os.path.join("files", "image", filename)
for filename in os.listdir(os.path.join("files", "image"))
if filename.endswith((".png", ".jpg", ".jpeg"))
]
title = "# Dereflection Any Image"
description = """Official demo for **Dereflection Any Image**.
Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details."""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
submit_btn = gr.Button("Remove Reflection", variant="primary")
with gr.Column():
output_image = gr.Image(label="Processed Image")
# 添加示例
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_image,
cache_examples=False, # 缓存结果以加快加载速度
label="Example Images",
)
# 绑定按钮点击事件
submit_btn.click(
fn=process_image,
inputs=input_image,
outputs=output_image,
)
return demo
# 主函数
def main():
demo = create_gradio_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main()