Spaces:
Running
on
Zero
Running
on
Zero
import spaces # 必须放在最前面 | |
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
import gradio as gr | |
# 延迟 CUDA 初始化 | |
weight_dtype = torch.float32 | |
# 加载模型组件 | |
from DAI.pipeline_all import DAIPipeline | |
from DAI.controlnetvae import ControlNetVAEModel | |
from DAI.decoder import CustomAutoencoderKL | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from transformers import CLIPTextModel, AutoTokenizer | |
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0" | |
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# 加载模型 | |
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device) | |
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device) | |
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device) | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False) | |
# 创建推理管道 | |
pipe = DAIPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
safety_checker=None, | |
scheduler=None, | |
feature_extractor=None, | |
t_start=0, | |
).to(device) | |
def resize_image(image, max_size): | |
"""Resize the image so that the maximum side is max_size.""" | |
width, height = image.size | |
if max(width, height) > max_size: | |
if width > height: | |
new_width = max_size | |
new_height = int(height * (max_size / width)) | |
else: | |
new_height = max_size | |
new_width = int(width * (max_size / height)) | |
image = image.resize((new_width, new_height), Image.LANCZOS) | |
return image | |
def process_image(input_image, resolution_choice): | |
# 将 Gradio 输入转换为 PIL 图像 | |
input_image = Image.fromarray(input_image) | |
# 根据用户选择设置处理分辨率 | |
if resolution_choice == "768": | |
input_image = resize_image(input_image, 768) | |
processing_resolution = None | |
else: | |
if input_image.size[0] > 2560 or input_image.size[1] > 2560: | |
processing_resolution = 2560 # 限制最大分辨率 | |
input_image = resize_image(input_image, 2560) | |
else: | |
processing_resolution = 0 # 使用原始分辨率 | |
# 处理图像 | |
pipe_out = pipe( | |
image=input_image, | |
prompt="remove glass reflection", | |
vae_2=vae_2, | |
processing_resolution=processing_resolution, | |
) | |
# 将输出转换为图像 | |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 | |
processed_frame = (processed_frame[0] * 255).astype(np.uint8) | |
processed_frame = Image.fromarray(processed_frame) | |
return input_image, processed_frame # 返回调整后的输入图片和处理后的图片 | |
# 创建 Gradio 界面 | |
def create_gradio_interface(): | |
# 示例图像 | |
example_images = [ | |
[os.path.join("files", "image", f"{i}.png"), "768"] for i in range(1, 14) | |
] | |
title = "# Dereflection Any Image" | |
description = """Official demo for **Dereflection Any Image**. | |
Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details.""" | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
resolution_choice = gr.Radio( | |
choices=["768", "Original Resolution"], | |
label="Processing Resolution", | |
value="768", # 默认选择原始分辨率 | |
) | |
gr.Markdown( | |
"Select the resolution for processing the image, 768 is recommended for faster processing and stable performance. Higher resolution may take longer to process, we restrict the maximum resolution to 2560." | |
) | |
submit_btn = gr.Button("Remove Reflection", variant="primary") | |
with gr.Column(): | |
output_image = gr.Image(label="Processed Image") | |
# 添加示例 | |
gr.Examples( | |
examples=example_images, | |
inputs=[input_image, resolution_choice], # 输入组件列表 | |
outputs=output_image, | |
fn=process_image, | |
cache_examples=False, # 缓存结果以加快加载速度 | |
label="Example Images", | |
) | |
# 绑定按钮点击事件 | |
submit_btn.click( | |
fn=process_image, | |
inputs=[input_image, resolution_choice], # 输入组件列表 | |
outputs=[input_image, output_image], # 输出组件列表 | |
) | |
return demo | |
# 主函数 | |
def main(): | |
demo = create_gradio_interface() | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
main() |