Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,287 +1,99 @@
|
|
1 |
-
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# --------------------------------------------------------------------------
|
15 |
-
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
-
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
-
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
-
# --------------------------------------------------------------------------
|
19 |
-
from __future__ import annotations
|
20 |
-
|
21 |
-
import functools
|
22 |
import os
|
23 |
-
import tempfile
|
24 |
-
|
25 |
-
import gradio as gr
|
26 |
-
import imageio as imageio
|
27 |
import numpy as np
|
28 |
-
import
|
29 |
-
import torch as torch
|
30 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
from PIL import Image
|
32 |
-
|
33 |
-
from tqdm import tqdm
|
34 |
-
|
35 |
-
from pathlib import Path
|
36 |
-
import gradio
|
37 |
-
from gradio.utils import get_cache_folder
|
38 |
-
|
39 |
from DAI.pipeline_all import DAIPipeline
|
40 |
-
|
41 |
from DAI.controlnetvae import ControlNetVAEModel
|
42 |
-
|
43 |
from DAI.decoder import CustomAutoencoderKL
|
44 |
-
|
45 |
-
from diffusers import (
|
46 |
-
AutoencoderKL,
|
47 |
-
UNet2DConditionModel,
|
48 |
-
)
|
49 |
-
|
50 |
from transformers import CLIPTextModel, AutoTokenizer
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# resolution = 0
|
86 |
-
# if max(input_image.size) < 768:
|
87 |
-
# resolution = None
|
88 |
-
resolution = None
|
89 |
-
|
90 |
pipe_out = pipe(
|
91 |
image=input_image,
|
92 |
prompt="remove glass reflection",
|
93 |
vae_2=vae_2,
|
94 |
-
processing_resolution=
|
95 |
)
|
96 |
|
|
|
97 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
98 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
99 |
processed_frame = Image.fromarray(processed_frame)
|
100 |
-
processed_frame.save(path_out_png)
|
101 |
-
yield [input_image, path_out_png]
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
}
|
131 |
-
h2 {
|
132 |
-
text-align: center;
|
133 |
-
display: block;
|
134 |
-
}
|
135 |
-
h3 {
|
136 |
-
text-align: center;
|
137 |
-
display: block;
|
138 |
-
}
|
139 |
-
.md_feedback li {
|
140 |
-
margin-bottom: 0px !important;
|
141 |
-
}
|
142 |
-
""",
|
143 |
-
head="""
|
144 |
-
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
145 |
-
<script>
|
146 |
-
window.dataLayer = window.dataLayer || [];
|
147 |
-
function gtag() {dataLayer.push(arguments);}
|
148 |
-
gtag('js', new Date());
|
149 |
-
gtag('config', 'G-1FWSVCGZTG');
|
150 |
-
</script>
|
151 |
-
""",
|
152 |
-
) as demo:
|
153 |
-
gr.Markdown(
|
154 |
-
"""
|
155 |
-
# Dereflection Any Image
|
156 |
-
<p align="center">
|
157 |
-
"""
|
158 |
)
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
image_input = gr.Image(
|
165 |
-
label="Input Image",
|
166 |
-
type="filepath",
|
167 |
-
)
|
168 |
-
with gr.Row():
|
169 |
-
image_submit_btn = gr.Button(
|
170 |
-
value="Dereflection", variant="primary"
|
171 |
-
)
|
172 |
-
image_reset_btn = gr.Button(value="Reset")
|
173 |
-
with gr.Column():
|
174 |
-
image_output_slider = ImageSlider(
|
175 |
-
label="outputs",
|
176 |
-
type="filepath",
|
177 |
-
show_download_button=True,
|
178 |
-
show_share_button=True,
|
179 |
-
interactive=False,
|
180 |
-
elem_classes="slider",
|
181 |
-
# position=0.25,
|
182 |
-
)
|
183 |
-
|
184 |
-
Examples(
|
185 |
-
fn=process_pipe_image,
|
186 |
-
examples=sorted([
|
187 |
-
os.path.join("files", "image", name)
|
188 |
-
for name in os.listdir(os.path.join("files", "image"))
|
189 |
-
]),
|
190 |
-
inputs=[image_input],
|
191 |
-
outputs=[image_output_slider],
|
192 |
-
cache_examples=False,
|
193 |
-
directory_name="examples_image",
|
194 |
-
)
|
195 |
-
|
196 |
-
### Image tab
|
197 |
-
image_submit_btn.click(
|
198 |
-
fn=process_image_check,
|
199 |
-
inputs=image_input,
|
200 |
-
outputs=None,
|
201 |
-
preprocess=False,
|
202 |
-
queue=False,
|
203 |
-
).success(
|
204 |
-
fn=process_pipe_image,
|
205 |
-
inputs=[
|
206 |
-
image_input,
|
207 |
-
],
|
208 |
-
outputs=[image_output_slider],
|
209 |
-
concurrency_limit=1,
|
210 |
-
)
|
211 |
-
|
212 |
-
image_reset_btn.click(
|
213 |
-
fn=lambda: (
|
214 |
-
None,
|
215 |
-
None,
|
216 |
-
None,
|
217 |
-
),
|
218 |
-
inputs=[],
|
219 |
-
outputs=[
|
220 |
-
image_input,
|
221 |
-
image_output_slider,
|
222 |
-
],
|
223 |
-
queue=False,
|
224 |
-
)
|
225 |
-
|
226 |
-
### Server launch
|
227 |
-
|
228 |
-
demo.queue(
|
229 |
-
api_open=False,
|
230 |
-
).launch(
|
231 |
-
server_name="0.0.0.0",
|
232 |
-
server_port=7860,
|
233 |
)
|
234 |
|
|
|
235 |
|
|
|
236 |
def main():
|
237 |
-
|
238 |
-
|
239 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
240 |
-
|
241 |
-
weight_dtype = torch.float32
|
242 |
-
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
243 |
-
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
244 |
-
revision = None
|
245 |
-
variant = None
|
246 |
-
|
247 |
-
# Load the model
|
248 |
-
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
|
249 |
-
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
|
250 |
-
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
|
251 |
-
|
252 |
-
vae = AutoencoderKL.from_pretrained(
|
253 |
-
pretrained_model_name_or_path2, subfolder="vae", revision=revision, variant=variant
|
254 |
-
).to(device)
|
255 |
-
|
256 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
257 |
-
pretrained_model_name_or_path2, subfolder="text_encoder", revision=revision, variant=variant
|
258 |
-
).to(device)
|
259 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
260 |
-
pretrained_model_name_or_path2,
|
261 |
-
subfolder="tokenizer",
|
262 |
-
revision=revision,
|
263 |
-
use_fast=False,
|
264 |
-
)
|
265 |
-
pipe = DAIPipeline(
|
266 |
-
vae=vae,
|
267 |
-
text_encoder=text_encoder,
|
268 |
-
tokenizer=tokenizer,
|
269 |
-
unet=unet,
|
270 |
-
controlnet=controlnet,
|
271 |
-
safety_checker=None,
|
272 |
-
scheduler=None,
|
273 |
-
feature_extractor=None,
|
274 |
-
t_start=0,
|
275 |
-
).to(device)
|
276 |
-
|
277 |
-
try:
|
278 |
-
import xformers
|
279 |
-
pipe.enable_xformers_memory_efficient_attention()
|
280 |
-
except:
|
281 |
-
pass # run without xformers
|
282 |
-
|
283 |
-
run_demo_server(pipe, vae_2)
|
284 |
-
|
285 |
|
286 |
if __name__ == "__main__":
|
287 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import torch
|
|
|
|
|
4 |
from PIL import Image
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from DAI.pipeline_all import DAIPipeline
|
|
|
7 |
from DAI.controlnetvae import ControlNetVAEModel
|
|
|
8 |
from DAI.decoder import CustomAutoencoderKL
|
9 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
10 |
from transformers import CLIPTextModel, AutoTokenizer
|
11 |
|
12 |
+
# Initialize device and model paths
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
weight_dtype = torch.float32
|
15 |
+
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
16 |
+
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
17 |
+
|
18 |
+
# Load the model components
|
19 |
+
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
|
20 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
|
21 |
+
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
|
22 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
|
23 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
|
25 |
+
|
26 |
+
# Create the pipeline
|
27 |
+
pipe = DAIPipeline(
|
28 |
+
vae=vae,
|
29 |
+
text_encoder=text_encoder,
|
30 |
+
tokenizer=tokenizer,
|
31 |
+
unet=unet,
|
32 |
+
controlnet=controlnet,
|
33 |
+
safety_checker=None,
|
34 |
+
scheduler=None,
|
35 |
+
feature_extractor=None,
|
36 |
+
t_start=0,
|
37 |
+
).to(device)
|
38 |
+
|
39 |
+
# Function to process the image
|
40 |
+
def process_image(input_image):
|
41 |
+
# Convert Gradio input to PIL Image
|
42 |
+
input_image = Image.fromarray(input_image)
|
43 |
+
|
44 |
+
# Process the image
|
|
|
|
|
|
|
|
|
|
|
45 |
pipe_out = pipe(
|
46 |
image=input_image,
|
47 |
prompt="remove glass reflection",
|
48 |
vae_2=vae_2,
|
49 |
+
processing_resolution=None,
|
50 |
)
|
51 |
|
52 |
+
# Convert the output to an image
|
53 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
54 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
55 |
processed_frame = Image.fromarray(processed_frame)
|
|
|
|
|
|
|
56 |
|
57 |
+
return processed_frame
|
58 |
+
|
59 |
+
# Gradio interface
|
60 |
+
def create_gradio_interface():
|
61 |
+
# Example images
|
62 |
+
example_images = [
|
63 |
+
os.path.join("files", "image", f"{i}.png") for i in range(1, 9)
|
64 |
+
]
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("# Dereflection Any Image")
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
71 |
+
submit_btn = gr.Button("Remove Reflection", variant="primary")
|
72 |
+
with gr.Column():
|
73 |
+
output_image = gr.Image(label="Processed Image")
|
74 |
+
|
75 |
+
# Add examples
|
76 |
+
gr.Examples(
|
77 |
+
examples=example_images,
|
78 |
+
inputs=input_image,
|
79 |
+
outputs=output_image,
|
80 |
+
fn=process_image,
|
81 |
+
cache_examples=False, # Cache results for faster loading
|
82 |
+
label="Example Images",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
|
85 |
+
submit_btn.click(
|
86 |
+
fn=process_image,
|
87 |
+
inputs=input_image,
|
88 |
+
outputs=output_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
+
return demo
|
92 |
|
93 |
+
# Main function to launch the Gradio app
|
94 |
def main():
|
95 |
+
demo = create_gradio_interface()
|
96 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
+
main()
|