Spaces:
Running
on
Zero
Running
on
Zero
Upload 9 files
Browse files- DAI/__init__.py +0 -0
- DAI/controlnetvae.py +250 -0
- DAI/decoder.py +313 -0
- DAI/pipeline_all.py +733 -0
- DAI/pipeline_onestep.py +723 -0
- app.py +306 -4
- requirements.txt +8 -0
- utils/image_utils.py +21 -0
- utils/loss_utils.py +64 -0
DAI/__init__.py
ADDED
File without changes
|
DAI/controlnetvae.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
34 |
+
CrossAttnDownBlock2D,
|
35 |
+
DownBlock2D,
|
36 |
+
UNetMidBlock2D,
|
37 |
+
UNetMidBlock2DCrossAttn,
|
38 |
+
get_down_block,
|
39 |
+
)
|
40 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
41 |
+
from diffusers.models.controlnet import ControlNetOutput
|
42 |
+
from diffusers.models import ControlNetModel
|
43 |
+
|
44 |
+
import pdb
|
45 |
+
|
46 |
+
|
47 |
+
class ControlNetVAEModel(ControlNetModel):
|
48 |
+
def forward(
|
49 |
+
self,
|
50 |
+
sample: torch.Tensor,
|
51 |
+
timestep: Union[torch.Tensor, float, int],
|
52 |
+
encoder_hidden_states: torch.Tensor,
|
53 |
+
controlnet_cond: torch.Tensor = None,
|
54 |
+
conditioning_scale: float = 1.0,
|
55 |
+
class_labels: Optional[torch.Tensor] = None,
|
56 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
57 |
+
attention_mask: Optional[torch.Tensor] = None,
|
58 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
59 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
60 |
+
guess_mode: bool = False,
|
61 |
+
return_dict: bool = True,
|
62 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
63 |
+
"""
|
64 |
+
The [`ControlNetVAEModel`] forward method.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
sample (`torch.Tensor`):
|
68 |
+
The noisy input tensor.
|
69 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
70 |
+
The number of timesteps to denoise an input.
|
71 |
+
encoder_hidden_states (`torch.Tensor`):
|
72 |
+
The encoder hidden states.
|
73 |
+
controlnet_cond (`torch.Tensor`):
|
74 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
75 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
76 |
+
The scale factor for ControlNet outputs.
|
77 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
78 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
79 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
80 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
81 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
82 |
+
embeddings.
|
83 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
84 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
85 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
86 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
87 |
+
added_cond_kwargs (`dict`):
|
88 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
89 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
90 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
91 |
+
guess_mode (`bool`, defaults to `False`):
|
92 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
93 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
94 |
+
return_dict (`bool`, defaults to `True`):
|
95 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
99 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
100 |
+
returned where the first element is the sample tensor.
|
101 |
+
"""
|
102 |
+
# check channel order
|
103 |
+
|
104 |
+
|
105 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
106 |
+
|
107 |
+
if channel_order == "rgb":
|
108 |
+
# in rgb order by default
|
109 |
+
...
|
110 |
+
elif channel_order == "bgr":
|
111 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
112 |
+
else:
|
113 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
114 |
+
|
115 |
+
# prepare attention_mask
|
116 |
+
if attention_mask is not None:
|
117 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
118 |
+
attention_mask = attention_mask.unsqueeze(1)
|
119 |
+
|
120 |
+
# 1. time
|
121 |
+
timesteps = timestep
|
122 |
+
if not torch.is_tensor(timesteps):
|
123 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
124 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
125 |
+
is_mps = sample.device.type == "mps"
|
126 |
+
if isinstance(timestep, float):
|
127 |
+
dtype = torch.float32 if is_mps else torch.float64
|
128 |
+
else:
|
129 |
+
dtype = torch.int32 if is_mps else torch.int64
|
130 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
131 |
+
elif len(timesteps.shape) == 0:
|
132 |
+
timesteps = timesteps[None].to(sample.device)
|
133 |
+
|
134 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
135 |
+
timesteps = timesteps.expand(sample.shape[0])
|
136 |
+
|
137 |
+
t_emb = self.time_proj(timesteps)
|
138 |
+
|
139 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
140 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
141 |
+
# there might be better ways to encapsulate this.
|
142 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
143 |
+
|
144 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
145 |
+
aug_emb = None
|
146 |
+
|
147 |
+
if self.class_embedding is not None:
|
148 |
+
if class_labels is None:
|
149 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
150 |
+
|
151 |
+
if self.config.class_embed_type == "timestep":
|
152 |
+
class_labels = self.time_proj(class_labels)
|
153 |
+
|
154 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
155 |
+
emb = emb + class_emb
|
156 |
+
|
157 |
+
if self.config.addition_embed_type is not None:
|
158 |
+
if self.config.addition_embed_type == "text":
|
159 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
160 |
+
|
161 |
+
elif self.config.addition_embed_type == "text_time":
|
162 |
+
if "text_embeds" not in added_cond_kwargs:
|
163 |
+
raise ValueError(
|
164 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
165 |
+
)
|
166 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
167 |
+
if "time_ids" not in added_cond_kwargs:
|
168 |
+
raise ValueError(
|
169 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
170 |
+
)
|
171 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
172 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
173 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
174 |
+
|
175 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
176 |
+
add_embeds = add_embeds.to(emb.dtype)
|
177 |
+
aug_emb = self.add_embedding(add_embeds)
|
178 |
+
|
179 |
+
|
180 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
181 |
+
# 2. pre-process
|
182 |
+
sample = self.conv_in(sample)
|
183 |
+
|
184 |
+
# 3. down
|
185 |
+
down_block_res_samples = (sample,)
|
186 |
+
for downsample_block in self.down_blocks:
|
187 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
188 |
+
sample, res_samples = downsample_block(
|
189 |
+
hidden_states=sample,
|
190 |
+
temb=emb,
|
191 |
+
encoder_hidden_states=encoder_hidden_states,
|
192 |
+
attention_mask=attention_mask,
|
193 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
197 |
+
|
198 |
+
down_block_res_samples += res_samples
|
199 |
+
|
200 |
+
# 4. mid
|
201 |
+
if self.mid_block is not None:
|
202 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
203 |
+
sample = self.mid_block(
|
204 |
+
sample,
|
205 |
+
emb,
|
206 |
+
encoder_hidden_states=encoder_hidden_states,
|
207 |
+
attention_mask=attention_mask,
|
208 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
sample = self.mid_block(sample, emb)
|
212 |
+
|
213 |
+
# 5. Control net blocks
|
214 |
+
|
215 |
+
controlnet_down_block_res_samples = ()
|
216 |
+
|
217 |
+
# NOTE that controlnet downblock is zeroconv, we discard
|
218 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
219 |
+
down_block_res_sample = down_block_res_sample
|
220 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
221 |
+
|
222 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
223 |
+
|
224 |
+
mid_block_res_sample = sample
|
225 |
+
|
226 |
+
# 6. scaling
|
227 |
+
if guess_mode and not self.config.global_pool_conditions:
|
228 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
229 |
+
scales = scales * conditioning_scale
|
230 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
231 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
232 |
+
else:
|
233 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
234 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
235 |
+
|
236 |
+
if self.config.global_pool_conditions:
|
237 |
+
down_block_res_samples = [
|
238 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
239 |
+
]
|
240 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
241 |
+
|
242 |
+
if not return_dict:
|
243 |
+
return (down_block_res_samples, mid_block_res_sample)
|
244 |
+
|
245 |
+
return ControlNetOutput(
|
246 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
|
DAI/decoder.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Dict, Optional, Tuple, Union
|
5 |
+
from diffusers import AutoencoderKL
|
6 |
+
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, Decoder
|
7 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor
|
8 |
+
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
9 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
10 |
+
AutoencoderTinyBlock,
|
11 |
+
UNetMidBlock2D,
|
12 |
+
get_down_block,
|
13 |
+
get_up_block,
|
14 |
+
)
|
15 |
+
from diffusers.utils.accelerate_utils import apply_forward_hook
|
16 |
+
|
17 |
+
class ZeroConv2d(nn.Module):
|
18 |
+
"""
|
19 |
+
Zero Convolution layer, similar to the one used in ControlNet.
|
20 |
+
"""
|
21 |
+
def __init__(self, in_channels, out_channels):
|
22 |
+
super().__init__()
|
23 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
24 |
+
self.conv.weight.data.zero_()
|
25 |
+
self.conv.bias.data.zero_()
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.conv(x)
|
29 |
+
|
30 |
+
class CustomAutoencoderKL(AutoencoderKL):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
in_channels: int = 3,
|
34 |
+
out_channels: int = 3,
|
35 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
36 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
37 |
+
block_out_channels: Tuple[int] = (64,),
|
38 |
+
layers_per_block: int = 1,
|
39 |
+
act_fn: str = "silu",
|
40 |
+
latent_channels: int = 4,
|
41 |
+
norm_num_groups: int = 32,
|
42 |
+
sample_size: int = 32,
|
43 |
+
scaling_factor: float = 0.18215,
|
44 |
+
force_upcast: float = True,
|
45 |
+
use_quant_conv: bool = True,
|
46 |
+
use_post_quant_conv: bool = True,
|
47 |
+
mid_block_add_attention: bool = True,
|
48 |
+
):
|
49 |
+
super().__init__(
|
50 |
+
in_channels=in_channels,
|
51 |
+
out_channels=out_channels,
|
52 |
+
down_block_types=down_block_types,
|
53 |
+
up_block_types=up_block_types,
|
54 |
+
block_out_channels=block_out_channels,
|
55 |
+
layers_per_block=layers_per_block,
|
56 |
+
act_fn=act_fn,
|
57 |
+
latent_channels=latent_channels,
|
58 |
+
norm_num_groups=norm_num_groups,
|
59 |
+
sample_size=sample_size,
|
60 |
+
scaling_factor=scaling_factor,
|
61 |
+
force_upcast=force_upcast,
|
62 |
+
use_quant_conv=use_quant_conv,
|
63 |
+
use_post_quant_conv=use_post_quant_conv,
|
64 |
+
mid_block_add_attention=mid_block_add_attention,
|
65 |
+
)
|
66 |
+
|
67 |
+
# Add Zero Convolution layers to the encoder
|
68 |
+
# self.zero_convs = nn.ModuleList()
|
69 |
+
# for i, out_channels_ in enumerate(block_out_channels):
|
70 |
+
# self.zero_convs.append(ZeroConv2d(out_channels_, out_channels_))
|
71 |
+
|
72 |
+
# Modify the decoder to accept skip connections
|
73 |
+
self.decoder = CustomDecoder(
|
74 |
+
in_channels=latent_channels,
|
75 |
+
out_channels=out_channels,
|
76 |
+
up_block_types=up_block_types,
|
77 |
+
block_out_channels=block_out_channels,
|
78 |
+
layers_per_block=layers_per_block,
|
79 |
+
norm_num_groups=norm_num_groups,
|
80 |
+
act_fn=act_fn,
|
81 |
+
mid_block_add_attention=mid_block_add_attention,
|
82 |
+
)
|
83 |
+
self.encoder = CustomEncoder(
|
84 |
+
in_channels=in_channels,
|
85 |
+
out_channels=latent_channels,
|
86 |
+
down_block_types=down_block_types,
|
87 |
+
block_out_channels=block_out_channels,
|
88 |
+
layers_per_block=layers_per_block,
|
89 |
+
norm_num_groups=norm_num_groups,
|
90 |
+
act_fn=act_fn,
|
91 |
+
mid_block_add_attention=mid_block_add_attention,
|
92 |
+
)
|
93 |
+
|
94 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True):
|
95 |
+
# Get the encoder outputs
|
96 |
+
_, skip_connections = self.encoder(x)
|
97 |
+
|
98 |
+
return skip_connections
|
99 |
+
|
100 |
+
def decode(self, z: torch.Tensor, skip_connections: list, return_dict: bool = True):
|
101 |
+
if self.post_quant_conv is not None:
|
102 |
+
z = self.post_quant_conv(z)
|
103 |
+
# Decode the latent representation with skip connections
|
104 |
+
dec = self.decoder(z, skip_connections)
|
105 |
+
|
106 |
+
if not return_dict:
|
107 |
+
return (dec,)
|
108 |
+
|
109 |
+
return DecoderOutput(sample=dec)
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
sample: torch.Tensor,
|
114 |
+
sample_posterior: bool = False,
|
115 |
+
return_dict: bool = True,
|
116 |
+
generator: Optional[torch.Generator] = None,
|
117 |
+
):
|
118 |
+
# Encode the input and get the skip connections
|
119 |
+
posterior, skip_connections = self.encode(sample, return_dict=True)
|
120 |
+
|
121 |
+
# Sample from the posterior
|
122 |
+
if sample_posterior:
|
123 |
+
z = posterior.sample(generator=generator)
|
124 |
+
else:
|
125 |
+
z = posterior.mode()
|
126 |
+
|
127 |
+
# Decode the latent representation with skip connections
|
128 |
+
dec = self.decode(z, skip_connections, return_dict=return_dict)
|
129 |
+
|
130 |
+
if not return_dict:
|
131 |
+
return (dec,)
|
132 |
+
|
133 |
+
return DecoderOutput(sample=dec)
|
134 |
+
|
135 |
+
|
136 |
+
class CustomDecoder(Decoder):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
in_channels: int,
|
140 |
+
out_channels: int,
|
141 |
+
up_block_types: Tuple[str, ...],
|
142 |
+
block_out_channels: Tuple[int, ...],
|
143 |
+
layers_per_block: int,
|
144 |
+
norm_num_groups: int,
|
145 |
+
act_fn: str,
|
146 |
+
mid_block_add_attention: bool,
|
147 |
+
):
|
148 |
+
super().__init__(
|
149 |
+
in_channels=in_channels,
|
150 |
+
out_channels=out_channels,
|
151 |
+
up_block_types=up_block_types,
|
152 |
+
block_out_channels=block_out_channels,
|
153 |
+
layers_per_block=layers_per_block,
|
154 |
+
norm_num_groups=norm_num_groups,
|
155 |
+
act_fn=act_fn,
|
156 |
+
mid_block_add_attention=mid_block_add_attention,
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(
|
160 |
+
self,
|
161 |
+
sample: torch.Tensor,
|
162 |
+
skip_connections: list,
|
163 |
+
latent_embeds: Optional[torch.Tensor] = None,
|
164 |
+
) -> torch.Tensor:
|
165 |
+
r"""The forward method of the `Decoder` class."""
|
166 |
+
|
167 |
+
sample = self.conv_in(sample)
|
168 |
+
|
169 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
170 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
171 |
+
|
172 |
+
def create_custom_forward(module):
|
173 |
+
def custom_forward(*inputs):
|
174 |
+
return module(*inputs)
|
175 |
+
|
176 |
+
return custom_forward
|
177 |
+
|
178 |
+
if is_torch_version(">=", "1.11.0"):
|
179 |
+
# middle
|
180 |
+
sample = torch.utils.checkpoint.checkpoint(
|
181 |
+
create_custom_forward(self.mid_block),
|
182 |
+
sample,
|
183 |
+
latent_embeds,
|
184 |
+
use_reentrant=False,
|
185 |
+
)
|
186 |
+
sample = sample.to(upscale_dtype)
|
187 |
+
|
188 |
+
# up
|
189 |
+
for up_block in self.up_blocks:
|
190 |
+
sample = torch.utils.checkpoint.checkpoint(
|
191 |
+
create_custom_forward(up_block),
|
192 |
+
sample,
|
193 |
+
latent_embeds,
|
194 |
+
use_reentrant=False,
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
# middle
|
198 |
+
sample = torch.utils.checkpoint.checkpoint(
|
199 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
200 |
+
)
|
201 |
+
sample = sample.to(upscale_dtype)
|
202 |
+
|
203 |
+
# up
|
204 |
+
for up_block in self.up_blocks:
|
205 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
206 |
+
else:
|
207 |
+
# middle
|
208 |
+
sample = self.mid_block(sample, latent_embeds)
|
209 |
+
sample = sample.to(upscale_dtype)
|
210 |
+
|
211 |
+
# up
|
212 |
+
# for up_block in self.up_blocks:
|
213 |
+
# sample = up_block(sample, latent_embeds)
|
214 |
+
for i, up_block in enumerate(self.up_blocks):
|
215 |
+
# Add skip connections directly
|
216 |
+
if i < len(skip_connections):
|
217 |
+
skip_connection = skip_connections[-(i + 1)]
|
218 |
+
# import pdb; pdb.set_trace()
|
219 |
+
sample = sample + skip_connection
|
220 |
+
# import pdb; pdb.set_trace() #torch.Size([1, 512, 96, 96]
|
221 |
+
sample = up_block(sample)
|
222 |
+
|
223 |
+
# post-process
|
224 |
+
if latent_embeds is None:
|
225 |
+
sample = self.conv_norm_out(sample)
|
226 |
+
else:
|
227 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
228 |
+
sample = self.conv_act(sample)
|
229 |
+
sample = self.conv_out(sample)
|
230 |
+
|
231 |
+
return sample
|
232 |
+
|
233 |
+
class CustomEncoder(Encoder):
|
234 |
+
r"""
|
235 |
+
Custom Encoder that adds Zero Convolution layers to each block's output
|
236 |
+
to generate skip connections.
|
237 |
+
"""
|
238 |
+
def __init__(
|
239 |
+
self,
|
240 |
+
in_channels: int = 3,
|
241 |
+
out_channels: int = 3,
|
242 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
243 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
244 |
+
layers_per_block: int = 2,
|
245 |
+
norm_num_groups: int = 32,
|
246 |
+
act_fn: str = "silu",
|
247 |
+
double_z: bool = True,
|
248 |
+
mid_block_add_attention: bool = True,
|
249 |
+
):
|
250 |
+
super().__init__(
|
251 |
+
in_channels=in_channels,
|
252 |
+
out_channels=out_channels,
|
253 |
+
down_block_types=down_block_types,
|
254 |
+
block_out_channels=block_out_channels,
|
255 |
+
layers_per_block=layers_per_block,
|
256 |
+
norm_num_groups=norm_num_groups,
|
257 |
+
act_fn=act_fn,
|
258 |
+
double_z=double_z,
|
259 |
+
mid_block_add_attention=mid_block_add_attention,
|
260 |
+
)
|
261 |
+
|
262 |
+
# Add Zero Convolution layers to each block's output
|
263 |
+
self.zero_convs = nn.ModuleList()
|
264 |
+
for i, out_channels in enumerate(block_out_channels):
|
265 |
+
if i < 2:
|
266 |
+
self.zero_convs.append(ZeroConv2d(out_channels, out_channels * 2))
|
267 |
+
else:
|
268 |
+
self.zero_convs.append(ZeroConv2d(out_channels, out_channels))
|
269 |
+
|
270 |
+
def forward(self, sample: torch.Tensor) -> list[torch.Tensor]:
|
271 |
+
r"""
|
272 |
+
Forward pass of the CustomEncoder.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
sample (`torch.Tensor`): Input tensor.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
`Tuple[torch.Tensor, List[torch.Tensor]]`:
|
279 |
+
- The final latent representation.
|
280 |
+
- A list of skip connections from each block.
|
281 |
+
"""
|
282 |
+
skip_connections = []
|
283 |
+
|
284 |
+
# Initial convolution
|
285 |
+
sample = self.conv_in(sample)
|
286 |
+
|
287 |
+
# Down blocks
|
288 |
+
for i, (down_block, zero_conv) in enumerate(zip(self.down_blocks, self.zero_convs)):
|
289 |
+
# import pdb; pdb.set_trace()
|
290 |
+
sample = down_block(sample)
|
291 |
+
if i != len(self.down_blocks) - 1:
|
292 |
+
sample_out = nn.functional.interpolate(zero_conv(sample), scale_factor=2, mode='bilinear', align_corners=False)
|
293 |
+
else:
|
294 |
+
sample_out = zero_conv(sample)
|
295 |
+
skip_connections.append(sample_out)
|
296 |
+
|
297 |
+
|
298 |
+
# import pdb; pdb.set_trace()
|
299 |
+
# torch.Size([1, 128, 768, 768])
|
300 |
+
# torch.Size([1, 128, 384, 384])
|
301 |
+
# torch.Size([1, 256, 192, 192])
|
302 |
+
# torch.Size([1, 512, 96, 96])
|
303 |
+
# torch.Size([1, 512, 96, 96])
|
304 |
+
|
305 |
+
# # Middle block
|
306 |
+
# sample = self.mid_block(sample)
|
307 |
+
|
308 |
+
# # Post-process
|
309 |
+
# sample = self.conv_norm_out(sample)
|
310 |
+
# sample = self.conv_act(sample)
|
311 |
+
# sample = self.conv_out(sample)
|
312 |
+
|
313 |
+
return sample, skip_connections
|
DAI/pipeline_all.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# More information and citation instructions are available on the
|
17 |
+
# --------------------------------------------------------------------------
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from PIL import Image
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
26 |
+
|
27 |
+
|
28 |
+
from diffusers.image_processor import PipelineImageInput
|
29 |
+
from diffusers.models import (
|
30 |
+
AutoencoderKL,
|
31 |
+
UNet2DConditionModel,
|
32 |
+
ControlNetModel,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import (
|
35 |
+
DDIMScheduler
|
36 |
+
)
|
37 |
+
|
38 |
+
from diffusers.utils import (
|
39 |
+
BaseOutput,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.controlnet import StableDiffusionControlNetPipeline
|
47 |
+
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
|
48 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
49 |
+
|
50 |
+
from DAI.decoder import CustomAutoencoderKL
|
51 |
+
|
52 |
+
import pdb
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
|
59 |
+
EXAMPLE_DOC_STRING = """
|
60 |
+
Examples:
|
61 |
+
```py
|
62 |
+
>>> import diffusers
|
63 |
+
>>> import torch
|
64 |
+
|
65 |
+
>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
|
66 |
+
... "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
|
67 |
+
... ).to("cuda")
|
68 |
+
|
69 |
+
>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
70 |
+
>>> normals = pipe(image)
|
71 |
+
|
72 |
+
>>> vis = pipe.image_processor.visualize_normals(normals.prediction)
|
73 |
+
>>> vis[0].save("einstein_normals.png")
|
74 |
+
```
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class DAIOutput(BaseOutput):
|
80 |
+
"""
|
81 |
+
Output class for Marigold monocular normals prediction pipeline.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
prediction (`np.ndarray`, `torch.Tensor`):
|
85 |
+
Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
|
86 |
+
\times width$, regardless of whether the images were passed as a 4D array or a list.
|
87 |
+
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
88 |
+
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
|
89 |
+
\times 1 \times height \times width$.
|
90 |
+
latent (`None`, `torch.Tensor`):
|
91 |
+
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
92 |
+
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
93 |
+
"""
|
94 |
+
|
95 |
+
prediction: Union[np.ndarray, torch.Tensor]
|
96 |
+
latent: Union[None, torch.Tensor]
|
97 |
+
gaus_noise: Union[None, torch.Tensor]
|
98 |
+
|
99 |
+
|
100 |
+
class DAIPipeline(StableDiffusionControlNetPipeline):
|
101 |
+
""" Pipeline for monocular normals estimation using the Marigold method: https://marigoldmonodepth.github.io.
|
102 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
103 |
+
|
104 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
105 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
106 |
+
|
107 |
+
The pipeline also inherits the following loading methods:
|
108 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
109 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
110 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
111 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
112 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
113 |
+
|
114 |
+
Args:
|
115 |
+
vae ([`AutoencoderKL`]):
|
116 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
117 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
118 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
119 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
120 |
+
A `CLIPTokenizer` to tokenize text.
|
121 |
+
unet ([`UNet2DConditionModel`]):
|
122 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
123 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
124 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
125 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
126 |
+
additional conditioning.
|
127 |
+
scheduler ([`SchedulerMixin`]):
|
128 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
129 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
130 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
131 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
132 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
133 |
+
about a model's potential harms.
|
134 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
135 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
136 |
+
"""
|
137 |
+
|
138 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
139 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
140 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
141 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
# vae_2: CustomAutoencoderKL,
|
148 |
+
vae: AutoencoderKL,
|
149 |
+
text_encoder: CLIPTextModel,
|
150 |
+
tokenizer: CLIPTokenizer,
|
151 |
+
unet: UNet2DConditionModel,
|
152 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
|
153 |
+
scheduler: Union[DDIMScheduler],
|
154 |
+
safety_checker: StableDiffusionSafetyChecker,
|
155 |
+
feature_extractor: CLIPImageProcessor,
|
156 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
157 |
+
requires_safety_checker: bool = True,
|
158 |
+
default_denoising_steps: Optional[int] = 1,
|
159 |
+
default_processing_resolution: Optional[int] = 768,
|
160 |
+
prompt="remove glass reflection",
|
161 |
+
empty_text_embedding=None,
|
162 |
+
t_start: Optional[int] = 0,
|
163 |
+
):
|
164 |
+
super().__init__(
|
165 |
+
vae,
|
166 |
+
text_encoder,
|
167 |
+
tokenizer,
|
168 |
+
unet,
|
169 |
+
controlnet,
|
170 |
+
scheduler,
|
171 |
+
safety_checker,
|
172 |
+
feature_extractor,
|
173 |
+
image_encoder,
|
174 |
+
requires_safety_checker,
|
175 |
+
)
|
176 |
+
# self.vae_2 = vae_2
|
177 |
+
|
178 |
+
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
179 |
+
self.control_image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
180 |
+
self.default_denoising_steps = default_denoising_steps
|
181 |
+
self.default_processing_resolution = default_processing_resolution
|
182 |
+
self.prompt = prompt
|
183 |
+
self.prompt_embeds = None
|
184 |
+
self.empty_text_embedding = empty_text_embedding
|
185 |
+
self.t_start= t_start # target_out latents
|
186 |
+
|
187 |
+
|
188 |
+
def check_inputs(
|
189 |
+
self,
|
190 |
+
image: PipelineImageInput,
|
191 |
+
num_inference_steps: int,
|
192 |
+
ensemble_size: int,
|
193 |
+
processing_resolution: int,
|
194 |
+
resample_method_input: str,
|
195 |
+
resample_method_output: str,
|
196 |
+
batch_size: int,
|
197 |
+
ensembling_kwargs: Optional[Dict[str, Any]],
|
198 |
+
latents: Optional[torch.Tensor],
|
199 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]],
|
200 |
+
output_type: str,
|
201 |
+
output_uncertainty: bool,
|
202 |
+
) -> int:
|
203 |
+
if num_inference_steps is None:
|
204 |
+
raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.")
|
205 |
+
if num_inference_steps < 1:
|
206 |
+
raise ValueError("`num_inference_steps` must be positive.")
|
207 |
+
if ensemble_size < 1:
|
208 |
+
raise ValueError("`ensemble_size` must be positive.")
|
209 |
+
if ensemble_size == 2:
|
210 |
+
logger.warning(
|
211 |
+
"`ensemble_size` == 2 results are similar to no ensembling (1); "
|
212 |
+
"consider increasing the value to at least 3."
|
213 |
+
)
|
214 |
+
if ensemble_size == 1 and output_uncertainty:
|
215 |
+
raise ValueError(
|
216 |
+
"Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` "
|
217 |
+
"greater than 1."
|
218 |
+
)
|
219 |
+
if processing_resolution is None:
|
220 |
+
raise ValueError(
|
221 |
+
"`processing_resolution` is not specified and could not be resolved from the model config."
|
222 |
+
)
|
223 |
+
if processing_resolution < 0:
|
224 |
+
raise ValueError(
|
225 |
+
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
|
226 |
+
"downsampled processing."
|
227 |
+
)
|
228 |
+
if processing_resolution % self.vae_scale_factor != 0:
|
229 |
+
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
|
230 |
+
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
231 |
+
raise ValueError(
|
232 |
+
"`resample_method_input` takes string values compatible with PIL library: "
|
233 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
234 |
+
)
|
235 |
+
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
236 |
+
raise ValueError(
|
237 |
+
"`resample_method_output` takes string values compatible with PIL library: "
|
238 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
239 |
+
)
|
240 |
+
if batch_size < 1:
|
241 |
+
raise ValueError("`batch_size` must be positive.")
|
242 |
+
if output_type not in ["pt", "np"]:
|
243 |
+
raise ValueError("`output_type` must be one of `pt` or `np`.")
|
244 |
+
if latents is not None and generator is not None:
|
245 |
+
raise ValueError("`latents` and `generator` cannot be used together.")
|
246 |
+
if ensembling_kwargs is not None:
|
247 |
+
if not isinstance(ensembling_kwargs, dict):
|
248 |
+
raise ValueError("`ensembling_kwargs` must be a dictionary.")
|
249 |
+
if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("closest", "mean"):
|
250 |
+
raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.")
|
251 |
+
|
252 |
+
# image checks
|
253 |
+
num_images = 0
|
254 |
+
W, H = None, None
|
255 |
+
if not isinstance(image, list):
|
256 |
+
image = [image]
|
257 |
+
for i, img in enumerate(image):
|
258 |
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
259 |
+
if img.ndim not in (2, 3, 4):
|
260 |
+
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
|
261 |
+
H_i, W_i = img.shape[-2:]
|
262 |
+
N_i = 1
|
263 |
+
if img.ndim == 4:
|
264 |
+
N_i = img.shape[0]
|
265 |
+
elif isinstance(img, Image.Image):
|
266 |
+
W_i, H_i = img.size
|
267 |
+
N_i = 1
|
268 |
+
else:
|
269 |
+
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
|
270 |
+
if W is None:
|
271 |
+
W, H = W_i, H_i
|
272 |
+
elif (W, H) != (W_i, H_i):
|
273 |
+
raise ValueError(
|
274 |
+
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
|
275 |
+
)
|
276 |
+
num_images += N_i
|
277 |
+
|
278 |
+
# latents checks
|
279 |
+
if latents is not None:
|
280 |
+
if not torch.is_tensor(latents):
|
281 |
+
raise ValueError("`latents` must be a torch.Tensor.")
|
282 |
+
if latents.dim() != 4:
|
283 |
+
raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.")
|
284 |
+
|
285 |
+
if processing_resolution > 0:
|
286 |
+
max_orig = max(H, W)
|
287 |
+
new_H = H * processing_resolution // max_orig
|
288 |
+
new_W = W * processing_resolution // max_orig
|
289 |
+
if new_H == 0 or new_W == 0:
|
290 |
+
raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
|
291 |
+
W, H = new_W, new_H
|
292 |
+
w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
|
293 |
+
h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
|
294 |
+
shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w)
|
295 |
+
|
296 |
+
if latents.shape != shape_expected:
|
297 |
+
raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.")
|
298 |
+
|
299 |
+
# generator checks
|
300 |
+
if generator is not None:
|
301 |
+
if isinstance(generator, list):
|
302 |
+
if len(generator) != num_images * ensemble_size:
|
303 |
+
raise ValueError(
|
304 |
+
"The number of generators must match the total number of ensemble members for all input images."
|
305 |
+
)
|
306 |
+
if not all(g.device.type == generator[0].device.type for g in generator):
|
307 |
+
raise ValueError("`generator` device placement is not consistent in the list.")
|
308 |
+
elif not isinstance(generator, torch.Generator):
|
309 |
+
raise ValueError(f"Unsupported generator type: {type(generator)}.")
|
310 |
+
|
311 |
+
return num_images
|
312 |
+
|
313 |
+
def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
|
314 |
+
if not hasattr(self, "_progress_bar_config"):
|
315 |
+
self._progress_bar_config = {}
|
316 |
+
elif not isinstance(self._progress_bar_config, dict):
|
317 |
+
raise ValueError(
|
318 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
319 |
+
)
|
320 |
+
|
321 |
+
progress_bar_config = dict(**self._progress_bar_config)
|
322 |
+
progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
|
323 |
+
progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
|
324 |
+
if iterable is not None:
|
325 |
+
return tqdm(iterable, **progress_bar_config)
|
326 |
+
elif total is not None:
|
327 |
+
return tqdm(total=total, **progress_bar_config)
|
328 |
+
else:
|
329 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
330 |
+
|
331 |
+
@torch.no_grad()
|
332 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
333 |
+
def __call__(
|
334 |
+
self,
|
335 |
+
image: PipelineImageInput,
|
336 |
+
vae_2: CustomAutoencoderKL,
|
337 |
+
prompt: Union[str, List[str]] = None,
|
338 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
339 |
+
num_inference_steps: Optional[int] = None,
|
340 |
+
ensemble_size: int = 1,
|
341 |
+
processing_resolution: Optional[int] = None,
|
342 |
+
match_input_resolution: bool = True,
|
343 |
+
resample_method_input: str = "bilinear",
|
344 |
+
resample_method_output: str = "bilinear",
|
345 |
+
batch_size: int = 1,
|
346 |
+
ensembling_kwargs: Optional[Dict[str, Any]] = None,
|
347 |
+
latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
|
348 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
349 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
350 |
+
num_images_per_prompt: Optional[int] = 1,
|
351 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
352 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
353 |
+
output_type: str = "np",
|
354 |
+
output_uncertainty: bool = False,
|
355 |
+
output_latent: bool = False,
|
356 |
+
skip_preprocess: bool = False,
|
357 |
+
return_dict: bool = True,
|
358 |
+
**kwargs,
|
359 |
+
):
|
360 |
+
"""
|
361 |
+
Function invoked when calling the pipeline.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
|
365 |
+
`List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
|
366 |
+
arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
|
367 |
+
by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
|
368 |
+
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
|
369 |
+
same width and height.
|
370 |
+
num_inference_steps (`int`, *optional*, defaults to `None`):
|
371 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
372 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
373 |
+
for Marigold-LCM models.
|
374 |
+
ensemble_size (`int`, defaults to `1`):
|
375 |
+
Number of ensemble predictions. Recommended values are 5 and higher for better precision, or 1 for
|
376 |
+
faster inference.
|
377 |
+
processing_resolution (`int`, *optional*, defaults to `None`):
|
378 |
+
Effective processing resolution. When set to `0`, matches the larger input image dimension. This
|
379 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
380 |
+
value `None` resolves to the optimal value from the model config.
|
381 |
+
match_input_resolution (`bool`, *optional*, defaults to `True`):
|
382 |
+
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
|
383 |
+
side of the output will equal to `processing_resolution`.
|
384 |
+
resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
|
385 |
+
Resampling method used to resize input images to `processing_resolution`. The accepted values are:
|
386 |
+
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
387 |
+
resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
|
388 |
+
Resampling method used to resize output predictions to match the input resolution. The accepted values
|
389 |
+
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
390 |
+
batch_size (`int`, *optional*, defaults to `1`):
|
391 |
+
Batch size; only matters when setting `ensemble_size` or passing a tensor of images.
|
392 |
+
ensembling_kwargs (`dict`, *optional*, defaults to `None`)
|
393 |
+
Extra dictionary with arguments for precise ensembling control. The following options are available:
|
394 |
+
- reduction (`str`, *optional*, defaults to `"closest"`): Defines the ensembling function applied in
|
395 |
+
every pixel location, can be either `"closest"` or `"mean"`.
|
396 |
+
latents (`torch.Tensor`, *optional*, defaults to `None`):
|
397 |
+
Latent noise tensors to replace the random initialization. These can be taken from the previous
|
398 |
+
function call's output.
|
399 |
+
generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`):
|
400 |
+
Random number generator object to ensure reproducibility.
|
401 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
402 |
+
Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted
|
403 |
+
values are: `"np"` (numpy array) or `"pt"` (torch tensor).
|
404 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
405 |
+
When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that
|
406 |
+
the `ensemble_size` argument is set to a value above 2.
|
407 |
+
output_latent (`bool`, *optional*, defaults to `False`):
|
408 |
+
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
|
409 |
+
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
410 |
+
`latents` argument.
|
411 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
412 |
+
Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.
|
413 |
+
|
414 |
+
Examples:
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
[`~pipelines.marigold.MarigoldNormalsOutput`] or `tuple`:
|
418 |
+
If `return_dict` is `True`, [`~pipelines.marigold.MarigoldNormalsOutput`] is returned, otherwise a
|
419 |
+
`tuple` is returned where the first element is the prediction, the second element is the uncertainty
|
420 |
+
(or `None`), and the third is the latent (or `None`).
|
421 |
+
"""
|
422 |
+
|
423 |
+
# 0. Resolving variables.
|
424 |
+
device = self._execution_device
|
425 |
+
dtype = self.dtype
|
426 |
+
|
427 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
428 |
+
if num_inference_steps is None:
|
429 |
+
num_inference_steps = self.default_denoising_steps
|
430 |
+
if processing_resolution is None:
|
431 |
+
processing_resolution = self.default_processing_resolution
|
432 |
+
|
433 |
+
|
434 |
+
# 1. Check inputs.
|
435 |
+
num_images = self.check_inputs(
|
436 |
+
image,
|
437 |
+
num_inference_steps,
|
438 |
+
ensemble_size,
|
439 |
+
processing_resolution,
|
440 |
+
resample_method_input,
|
441 |
+
resample_method_output,
|
442 |
+
batch_size,
|
443 |
+
ensembling_kwargs,
|
444 |
+
latents,
|
445 |
+
generator,
|
446 |
+
output_type,
|
447 |
+
output_uncertainty,
|
448 |
+
)
|
449 |
+
|
450 |
+
|
451 |
+
# 2. Prepare empty text conditioning.
|
452 |
+
# Model invocation: self.tokenizer, self.text_encoder.
|
453 |
+
if self.empty_text_embedding is None:
|
454 |
+
prompt = ""
|
455 |
+
text_inputs = self.tokenizer(
|
456 |
+
prompt,
|
457 |
+
padding="do_not_pad",
|
458 |
+
max_length=self.tokenizer.model_max_length,
|
459 |
+
truncation=True,
|
460 |
+
return_tensors="pt",
|
461 |
+
)
|
462 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
463 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
|
464 |
+
|
465 |
+
|
466 |
+
|
467 |
+
# 3. prepare prompt
|
468 |
+
if self.prompt_embeds is None:
|
469 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
470 |
+
self.prompt,
|
471 |
+
device,
|
472 |
+
num_images_per_prompt,
|
473 |
+
False,
|
474 |
+
negative_prompt,
|
475 |
+
prompt_embeds=prompt_embeds,
|
476 |
+
negative_prompt_embeds=None,
|
477 |
+
lora_scale=None,
|
478 |
+
clip_skip=None,
|
479 |
+
)
|
480 |
+
self.prompt_embeds = prompt_embeds
|
481 |
+
self.negative_prompt_embeds = negative_prompt_embeds
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
# 4. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
|
486 |
+
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
|
487 |
+
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
|
488 |
+
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
|
489 |
+
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
|
490 |
+
# operation and leads to the most reasonable results. Using the native image resolution or any other processing
|
491 |
+
# resolution can lead to loss of either fine details or global context in the output predictions.
|
492 |
+
if not skip_preprocess:
|
493 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
494 |
+
image, processing_resolution, resample_method_input, device, dtype
|
495 |
+
) # [N,3,PPH,PPW]
|
496 |
+
else:
|
497 |
+
padding = (0, 0)
|
498 |
+
original_resolution = image.shape[2:]
|
499 |
+
# 5. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
|
500 |
+
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
|
501 |
+
# Latents of each such predictions across all input images and all ensemble members are represented in the
|
502 |
+
# `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
|
503 |
+
# into latent space and replicated `E` times. The latents can be either generated (see `generator` to ensure
|
504 |
+
# reproducibility), or passed explicitly via the `latents` argument. The latter can be set outside the pipeline
|
505 |
+
# code. For example, in the Marigold-LCM video processing demo, the latents initialization of a frame is taken
|
506 |
+
# as a convex combination of the latents output of the pipeline for the previous frame and a newly-sampled
|
507 |
+
# noise. This behavior can be achieved by setting the `output_latent` argument to `True`. The latent space
|
508 |
+
# dimensions are `(h, w)`. Encoding into latent space happens in batches of size `batch_size`.
|
509 |
+
# Model invocation: self.vae.encoder.
|
510 |
+
image_latent, pred_latent = self.prepare_latents(
|
511 |
+
image, latents, generator, ensemble_size, batch_size
|
512 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
513 |
+
|
514 |
+
gaus_noise = pred_latent.detach().clone()
|
515 |
+
# del image
|
516 |
+
|
517 |
+
|
518 |
+
# 6. obtain control_output
|
519 |
+
|
520 |
+
cond_scale =controlnet_conditioning_scale
|
521 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
522 |
+
image_latent.detach(),
|
523 |
+
self.t_start,
|
524 |
+
encoder_hidden_states=self.prompt_embeds,
|
525 |
+
conditioning_scale=cond_scale,
|
526 |
+
guess_mode=False,
|
527 |
+
return_dict=False,
|
528 |
+
)
|
529 |
+
|
530 |
+
# 7. Onestep sampling
|
531 |
+
latent_x_t = self.unet(
|
532 |
+
pred_latent,
|
533 |
+
self.t_start,
|
534 |
+
encoder_hidden_states=self.prompt_embeds,
|
535 |
+
down_block_additional_residuals=down_block_res_samples,
|
536 |
+
mid_block_additional_residual=mid_block_res_sample,
|
537 |
+
return_dict=False,
|
538 |
+
)[0]
|
539 |
+
|
540 |
+
|
541 |
+
del (
|
542 |
+
pred_latent,
|
543 |
+
image_latent,
|
544 |
+
)
|
545 |
+
|
546 |
+
# encoder
|
547 |
+
skip_connections = vae_2.encode(image)
|
548 |
+
# decoder
|
549 |
+
prediction = self.decode_prediction(latent_x_t, skip_connections, vae_2)
|
550 |
+
|
551 |
+
|
552 |
+
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E,3,PH,PW]
|
553 |
+
|
554 |
+
prediction = self.image_processor.resize_antialias(
|
555 |
+
prediction, original_resolution, resample_method_output, is_aa=False
|
556 |
+
) # [N,3,H,W]
|
557 |
+
|
558 |
+
if output_type == "np":
|
559 |
+
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,3]
|
560 |
+
|
561 |
+
# 11. Offload all models
|
562 |
+
self.maybe_free_model_hooks()
|
563 |
+
|
564 |
+
return DAIOutput(
|
565 |
+
prediction=prediction,
|
566 |
+
latent=latent_x_t,
|
567 |
+
gaus_noise=gaus_noise,
|
568 |
+
)
|
569 |
+
|
570 |
+
# Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
|
571 |
+
def prepare_latents(
|
572 |
+
self,
|
573 |
+
image: torch.Tensor,
|
574 |
+
latents: Optional[torch.Tensor],
|
575 |
+
generator: Optional[torch.Generator],
|
576 |
+
ensemble_size: int,
|
577 |
+
batch_size: int,
|
578 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
579 |
+
def retrieve_latents(encoder_output):
|
580 |
+
if hasattr(encoder_output, "latent_dist"):
|
581 |
+
return encoder_output.latent_dist.mode()
|
582 |
+
elif hasattr(encoder_output, "latents"):
|
583 |
+
return encoder_output.latents
|
584 |
+
else:
|
585 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
586 |
+
|
587 |
+
|
588 |
+
|
589 |
+
image_latent = torch.cat(
|
590 |
+
[
|
591 |
+
retrieve_latents(self.vae.encode(image[i : i + batch_size]))
|
592 |
+
for i in range(0, image.shape[0], batch_size)
|
593 |
+
],
|
594 |
+
dim=0,
|
595 |
+
) # [N,4,h,w]
|
596 |
+
image_latent = image_latent * self.vae.config.scaling_factor
|
597 |
+
image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) # [N*E,4,h,w]
|
598 |
+
|
599 |
+
pred_latent = torch.zeros_like(image_latent)
|
600 |
+
if pred_latent is None:
|
601 |
+
pred_latent = randn_tensor(
|
602 |
+
image_latent.shape,
|
603 |
+
generator=generator,
|
604 |
+
device=image_latent.device,
|
605 |
+
dtype=image_latent.dtype,
|
606 |
+
) # [N*E,4,h,w]
|
607 |
+
|
608 |
+
return image_latent, pred_latent
|
609 |
+
|
610 |
+
def decode_prediction(self, pred_latent: torch.Tensor, skip_connections: list, vae_2: CustomAutoencoderKL) -> torch.Tensor:
|
611 |
+
if pred_latent.dim() != 4 or pred_latent.shape[1] != vae_2.config.latent_channels:
|
612 |
+
raise ValueError(
|
613 |
+
f"Expecting 4D tensor of shape [B,{vae_2.config.latent_channels},H,W]; got {pred_latent.shape}."
|
614 |
+
)
|
615 |
+
|
616 |
+
prediction = vae_2.decode(pred_latent / vae_2.config.scaling_factor, skip_connections, return_dict=False)[0] # [B,3,H,W]
|
617 |
+
|
618 |
+
return prediction # [B,3,H,W]
|
619 |
+
|
620 |
+
@staticmethod
|
621 |
+
def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
|
622 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
623 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
624 |
+
|
625 |
+
norm = torch.norm(normals, dim=1, keepdim=True)
|
626 |
+
normals /= norm.clamp(min=eps)
|
627 |
+
|
628 |
+
return normals
|
629 |
+
|
630 |
+
@staticmethod
|
631 |
+
def ensemble_normals(
|
632 |
+
normals: torch.Tensor, output_uncertainty: bool, reduction: str = "closest"
|
633 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
634 |
+
"""
|
635 |
+
Ensembles the normals maps represented by the `normals` tensor with expected shape `(B, 3, H, W)`, where B is
|
636 |
+
the number of ensemble members for a given prediction of size `(H x W)`.
|
637 |
+
|
638 |
+
Args:
|
639 |
+
normals (`torch.Tensor`):
|
640 |
+
Input ensemble normals maps.
|
641 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
642 |
+
Whether to output uncertainty map.
|
643 |
+
reduction (`str`, *optional*, defaults to `"closest"`):
|
644 |
+
Reduction method used to ensemble aligned predictions. The accepted values are: `"closest"` and
|
645 |
+
`"mean"`.
|
646 |
+
|
647 |
+
Returns:
|
648 |
+
A tensor of aligned and ensembled normals maps with shape `(1, 3, H, W)` and optionally a tensor of
|
649 |
+
uncertainties of shape `(1, 1, H, W)`.
|
650 |
+
"""
|
651 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
652 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
653 |
+
if reduction not in ("closest", "mean"):
|
654 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
655 |
+
|
656 |
+
mean_normals = normals.mean(dim=0, keepdim=True) # [1,3,H,W]
|
657 |
+
mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals) # [1,3,H,W]
|
658 |
+
|
659 |
+
sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True) # [E,1,H,W]
|
660 |
+
sim_cos = sim_cos.clamp(-1, 1) # required to avoid NaN in uncertainty with fp16
|
661 |
+
|
662 |
+
uncertainty = None
|
663 |
+
if output_uncertainty:
|
664 |
+
uncertainty = sim_cos.arccos() # [E,1,H,W]
|
665 |
+
uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi # [1,1,H,W]
|
666 |
+
|
667 |
+
if reduction == "mean":
|
668 |
+
return mean_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
669 |
+
|
670 |
+
closest_indices = sim_cos.argmax(dim=0, keepdim=True) # [1,1,H,W]
|
671 |
+
closest_indices = closest_indices.repeat(1, 3, 1, 1) # [1,3,H,W]
|
672 |
+
closest_normals = torch.gather(normals, 0, closest_indices) # [1,3,H,W]
|
673 |
+
|
674 |
+
return closest_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
675 |
+
|
676 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
677 |
+
def retrieve_timesteps(
|
678 |
+
scheduler,
|
679 |
+
num_inference_steps: Optional[int] = None,
|
680 |
+
device: Optional[Union[str, torch.device]] = None,
|
681 |
+
timesteps: Optional[List[int]] = None,
|
682 |
+
sigmas: Optional[List[float]] = None,
|
683 |
+
**kwargs,
|
684 |
+
):
|
685 |
+
"""
|
686 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
687 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
688 |
+
|
689 |
+
Args:
|
690 |
+
scheduler (`SchedulerMixin`):
|
691 |
+
The scheduler to get timesteps from.
|
692 |
+
num_inference_steps (`int`):
|
693 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
694 |
+
must be `None`.
|
695 |
+
device (`str` or `torch.device`, *optional*):
|
696 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
697 |
+
timesteps (`List[int]`, *optional*):
|
698 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
699 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
700 |
+
sigmas (`List[float]`, *optional*):
|
701 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
702 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
703 |
+
|
704 |
+
Returns:
|
705 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
706 |
+
second element is the number of inference steps.
|
707 |
+
"""
|
708 |
+
if timesteps is not None and sigmas is not None:
|
709 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
710 |
+
if timesteps is not None:
|
711 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
712 |
+
if not accepts_timesteps:
|
713 |
+
raise ValueError(
|
714 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
715 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
716 |
+
)
|
717 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
718 |
+
timesteps = scheduler.timesteps
|
719 |
+
num_inference_steps = len(timesteps)
|
720 |
+
elif sigmas is not None:
|
721 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
722 |
+
if not accept_sigmas:
|
723 |
+
raise ValueError(
|
724 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
725 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
726 |
+
)
|
727 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
728 |
+
timesteps = scheduler.timesteps
|
729 |
+
num_inference_steps = len(timesteps)
|
730 |
+
else:
|
731 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
732 |
+
timesteps = scheduler.timesteps
|
733 |
+
return timesteps, num_inference_steps
|
DAI/pipeline_onestep.py
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# --------------------------------------------------------------------------
|
16 |
+
# More information and citation instructions are available on the
|
17 |
+
# --------------------------------------------------------------------------
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from PIL import Image
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
26 |
+
|
27 |
+
|
28 |
+
from diffusers.image_processor import PipelineImageInput
|
29 |
+
from diffusers.models import (
|
30 |
+
AutoencoderKL,
|
31 |
+
UNet2DConditionModel,
|
32 |
+
ControlNetModel,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import (
|
35 |
+
DDIMScheduler
|
36 |
+
)
|
37 |
+
|
38 |
+
from diffusers.utils import (
|
39 |
+
BaseOutput,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.controlnet import StableDiffusionControlNetPipeline
|
47 |
+
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
|
48 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
49 |
+
|
50 |
+
import pdb
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
55 |
+
|
56 |
+
|
57 |
+
EXAMPLE_DOC_STRING = """
|
58 |
+
Examples:
|
59 |
+
```py
|
60 |
+
>>> import diffusers
|
61 |
+
>>> import torch
|
62 |
+
|
63 |
+
>>> pipe = diffusers.MarigoldNormalsPipeline.from_pretrained(
|
64 |
+
... "prs-eth/marigold-normals-lcm-v0-1", variant="fp16", torch_dtype=torch.float16
|
65 |
+
... ).to("cuda")
|
66 |
+
|
67 |
+
>>> image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg")
|
68 |
+
>>> normals = pipe(image)
|
69 |
+
|
70 |
+
>>> vis = pipe.image_processor.visualize_normals(normals.prediction)
|
71 |
+
>>> vis[0].save("einstein_normals.png")
|
72 |
+
```
|
73 |
+
"""
|
74 |
+
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class DAIOutput(BaseOutput):
|
78 |
+
"""
|
79 |
+
Output class for Marigold monocular normals prediction pipeline.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
prediction (`np.ndarray`, `torch.Tensor`):
|
83 |
+
Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
|
84 |
+
\times width$, regardless of whether the images were passed as a 4D array or a list.
|
85 |
+
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
|
86 |
+
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
|
87 |
+
\times 1 \times height \times width$.
|
88 |
+
latent (`None`, `torch.Tensor`):
|
89 |
+
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
90 |
+
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
91 |
+
"""
|
92 |
+
|
93 |
+
prediction: Union[np.ndarray, torch.Tensor]
|
94 |
+
latent: Union[None, torch.Tensor]
|
95 |
+
gaus_noise: Union[None, torch.Tensor]
|
96 |
+
|
97 |
+
|
98 |
+
class OneStepPipeline(StableDiffusionControlNetPipeline):
|
99 |
+
""" Pipeline for monocular normals estimation using the Marigold method: https://marigoldmonodepth.github.io.
|
100 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
101 |
+
|
102 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
103 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
104 |
+
|
105 |
+
The pipeline also inherits the following loading methods:
|
106 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
107 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
108 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
109 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
110 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
111 |
+
|
112 |
+
Args:
|
113 |
+
vae ([`AutoencoderKL`]):
|
114 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
115 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
116 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
117 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
118 |
+
A `CLIPTokenizer` to tokenize text.
|
119 |
+
unet ([`UNet2DConditionModel`]):
|
120 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
121 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
122 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
123 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
124 |
+
additional conditioning.
|
125 |
+
scheduler ([`SchedulerMixin`]):
|
126 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
127 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
128 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
129 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
130 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
131 |
+
about a model's potential harms.
|
132 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
133 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
134 |
+
"""
|
135 |
+
|
136 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
137 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
138 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
139 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
vae: AutoencoderKL,
|
146 |
+
text_encoder: CLIPTextModel,
|
147 |
+
tokenizer: CLIPTokenizer,
|
148 |
+
unet: UNet2DConditionModel,
|
149 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel]],
|
150 |
+
scheduler: Union[DDIMScheduler],
|
151 |
+
safety_checker: StableDiffusionSafetyChecker,
|
152 |
+
feature_extractor: CLIPImageProcessor,
|
153 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
154 |
+
requires_safety_checker: bool = True,
|
155 |
+
default_denoising_steps: Optional[int] = 1,
|
156 |
+
default_processing_resolution: Optional[int] = 768,
|
157 |
+
prompt="remove glass reflection",
|
158 |
+
empty_text_embedding=None,
|
159 |
+
t_start: Optional[int] = 401,
|
160 |
+
):
|
161 |
+
super().__init__(
|
162 |
+
vae,
|
163 |
+
text_encoder,
|
164 |
+
tokenizer,
|
165 |
+
unet,
|
166 |
+
controlnet,
|
167 |
+
scheduler,
|
168 |
+
safety_checker,
|
169 |
+
feature_extractor,
|
170 |
+
image_encoder,
|
171 |
+
requires_safety_checker,
|
172 |
+
)
|
173 |
+
|
174 |
+
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
175 |
+
self.control_image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
176 |
+
self.default_denoising_steps = default_denoising_steps
|
177 |
+
self.default_processing_resolution = default_processing_resolution
|
178 |
+
self.prompt = prompt
|
179 |
+
self.prompt_embeds = None
|
180 |
+
self.empty_text_embedding = empty_text_embedding
|
181 |
+
self.t_start= t_start # target_out latents
|
182 |
+
|
183 |
+
def check_inputs(
|
184 |
+
self,
|
185 |
+
image: PipelineImageInput,
|
186 |
+
num_inference_steps: int,
|
187 |
+
ensemble_size: int,
|
188 |
+
processing_resolution: int,
|
189 |
+
resample_method_input: str,
|
190 |
+
resample_method_output: str,
|
191 |
+
batch_size: int,
|
192 |
+
ensembling_kwargs: Optional[Dict[str, Any]],
|
193 |
+
latents: Optional[torch.Tensor],
|
194 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]],
|
195 |
+
output_type: str,
|
196 |
+
output_uncertainty: bool,
|
197 |
+
) -> int:
|
198 |
+
if num_inference_steps is None:
|
199 |
+
raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.")
|
200 |
+
if num_inference_steps < 1:
|
201 |
+
raise ValueError("`num_inference_steps` must be positive.")
|
202 |
+
if ensemble_size < 1:
|
203 |
+
raise ValueError("`ensemble_size` must be positive.")
|
204 |
+
if ensemble_size == 2:
|
205 |
+
logger.warning(
|
206 |
+
"`ensemble_size` == 2 results are similar to no ensembling (1); "
|
207 |
+
"consider increasing the value to at least 3."
|
208 |
+
)
|
209 |
+
if ensemble_size == 1 and output_uncertainty:
|
210 |
+
raise ValueError(
|
211 |
+
"Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` "
|
212 |
+
"greater than 1."
|
213 |
+
)
|
214 |
+
if processing_resolution is None:
|
215 |
+
raise ValueError(
|
216 |
+
"`processing_resolution` is not specified and could not be resolved from the model config."
|
217 |
+
)
|
218 |
+
if processing_resolution < 0:
|
219 |
+
raise ValueError(
|
220 |
+
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
|
221 |
+
"downsampled processing."
|
222 |
+
)
|
223 |
+
if processing_resolution % self.vae_scale_factor != 0:
|
224 |
+
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
|
225 |
+
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
226 |
+
raise ValueError(
|
227 |
+
"`resample_method_input` takes string values compatible with PIL library: "
|
228 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
229 |
+
)
|
230 |
+
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
231 |
+
raise ValueError(
|
232 |
+
"`resample_method_output` takes string values compatible with PIL library: "
|
233 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
234 |
+
)
|
235 |
+
if batch_size < 1:
|
236 |
+
raise ValueError("`batch_size` must be positive.")
|
237 |
+
if output_type not in ["pt", "np"]:
|
238 |
+
raise ValueError("`output_type` must be one of `pt` or `np`.")
|
239 |
+
if latents is not None and generator is not None:
|
240 |
+
raise ValueError("`latents` and `generator` cannot be used together.")
|
241 |
+
if ensembling_kwargs is not None:
|
242 |
+
if not isinstance(ensembling_kwargs, dict):
|
243 |
+
raise ValueError("`ensembling_kwargs` must be a dictionary.")
|
244 |
+
if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("closest", "mean"):
|
245 |
+
raise ValueError("`ensembling_kwargs['reduction']` can be either `'closest'` or `'mean'`.")
|
246 |
+
|
247 |
+
# image checks
|
248 |
+
num_images = 0
|
249 |
+
W, H = None, None
|
250 |
+
if not isinstance(image, list):
|
251 |
+
image = [image]
|
252 |
+
for i, img in enumerate(image):
|
253 |
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
254 |
+
if img.ndim not in (2, 3, 4):
|
255 |
+
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
|
256 |
+
H_i, W_i = img.shape[-2:]
|
257 |
+
N_i = 1
|
258 |
+
if img.ndim == 4:
|
259 |
+
N_i = img.shape[0]
|
260 |
+
elif isinstance(img, Image.Image):
|
261 |
+
W_i, H_i = img.size
|
262 |
+
N_i = 1
|
263 |
+
else:
|
264 |
+
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
|
265 |
+
if W is None:
|
266 |
+
W, H = W_i, H_i
|
267 |
+
elif (W, H) != (W_i, H_i):
|
268 |
+
raise ValueError(
|
269 |
+
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
|
270 |
+
)
|
271 |
+
num_images += N_i
|
272 |
+
|
273 |
+
# latents checks
|
274 |
+
if latents is not None:
|
275 |
+
if not torch.is_tensor(latents):
|
276 |
+
raise ValueError("`latents` must be a torch.Tensor.")
|
277 |
+
if latents.dim() != 4:
|
278 |
+
raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.")
|
279 |
+
|
280 |
+
if processing_resolution > 0:
|
281 |
+
max_orig = max(H, W)
|
282 |
+
new_H = H * processing_resolution // max_orig
|
283 |
+
new_W = W * processing_resolution // max_orig
|
284 |
+
if new_H == 0 or new_W == 0:
|
285 |
+
raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
|
286 |
+
W, H = new_W, new_H
|
287 |
+
w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
|
288 |
+
h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
|
289 |
+
shape_expected = (num_images * ensemble_size, self.vae.config.latent_channels, h, w)
|
290 |
+
|
291 |
+
if latents.shape != shape_expected:
|
292 |
+
raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.")
|
293 |
+
|
294 |
+
# generator checks
|
295 |
+
if generator is not None:
|
296 |
+
if isinstance(generator, list):
|
297 |
+
if len(generator) != num_images * ensemble_size:
|
298 |
+
raise ValueError(
|
299 |
+
"The number of generators must match the total number of ensemble members for all input images."
|
300 |
+
)
|
301 |
+
if not all(g.device.type == generator[0].device.type for g in generator):
|
302 |
+
raise ValueError("`generator` device placement is not consistent in the list.")
|
303 |
+
elif not isinstance(generator, torch.Generator):
|
304 |
+
raise ValueError(f"Unsupported generator type: {type(generator)}.")
|
305 |
+
|
306 |
+
return num_images
|
307 |
+
|
308 |
+
def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
|
309 |
+
if not hasattr(self, "_progress_bar_config"):
|
310 |
+
self._progress_bar_config = {}
|
311 |
+
elif not isinstance(self._progress_bar_config, dict):
|
312 |
+
raise ValueError(
|
313 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
314 |
+
)
|
315 |
+
|
316 |
+
progress_bar_config = dict(**self._progress_bar_config)
|
317 |
+
progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
|
318 |
+
progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
|
319 |
+
if iterable is not None:
|
320 |
+
return tqdm(iterable, **progress_bar_config)
|
321 |
+
elif total is not None:
|
322 |
+
return tqdm(total=total, **progress_bar_config)
|
323 |
+
else:
|
324 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
325 |
+
|
326 |
+
@torch.no_grad()
|
327 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
328 |
+
def __call__(
|
329 |
+
self,
|
330 |
+
image: PipelineImageInput,
|
331 |
+
prompt: Union[str, List[str]] = None,
|
332 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
333 |
+
num_inference_steps: Optional[int] = None,
|
334 |
+
ensemble_size: int = 1,
|
335 |
+
processing_resolution: Optional[int] = None,
|
336 |
+
match_input_resolution: bool = True,
|
337 |
+
resample_method_input: str = "bilinear",
|
338 |
+
resample_method_output: str = "bilinear",
|
339 |
+
batch_size: int = 1,
|
340 |
+
ensembling_kwargs: Optional[Dict[str, Any]] = None,
|
341 |
+
latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None,
|
342 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
343 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
344 |
+
num_images_per_prompt: Optional[int] = 1,
|
345 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
346 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
347 |
+
output_type: str = "np",
|
348 |
+
output_uncertainty: bool = False,
|
349 |
+
output_latent: bool = False,
|
350 |
+
skip_preprocess: bool = False,
|
351 |
+
return_dict: bool = True,
|
352 |
+
**kwargs,
|
353 |
+
):
|
354 |
+
"""
|
355 |
+
Function invoked when calling the pipeline.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
|
359 |
+
`List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
|
360 |
+
arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
|
361 |
+
by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
|
362 |
+
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
|
363 |
+
same width and height.
|
364 |
+
num_inference_steps (`int`, *optional*, defaults to `None`):
|
365 |
+
Number of denoising diffusion steps during inference. The default value `None` results in automatic
|
366 |
+
selection. The number of steps should be at least 10 with the full Marigold models, and between 1 and 4
|
367 |
+
for Marigold-LCM models.
|
368 |
+
ensemble_size (`int`, defaults to `1`):
|
369 |
+
Number of ensemble predictions. Recommended values are 5 and higher for better precision, or 1 for
|
370 |
+
faster inference.
|
371 |
+
processing_resolution (`int`, *optional*, defaults to `None`):
|
372 |
+
Effective processing resolution. When set to `0`, matches the larger input image dimension. This
|
373 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
374 |
+
value `None` resolves to the optimal value from the model config.
|
375 |
+
match_input_resolution (`bool`, *optional*, defaults to `True`):
|
376 |
+
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
|
377 |
+
side of the output will equal to `processing_resolution`.
|
378 |
+
resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
|
379 |
+
Resampling method used to resize input images to `processing_resolution`. The accepted values are:
|
380 |
+
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
381 |
+
resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
|
382 |
+
Resampling method used to resize output predictions to match the input resolution. The accepted values
|
383 |
+
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
384 |
+
batch_size (`int`, *optional*, defaults to `1`):
|
385 |
+
Batch size; only matters when setting `ensemble_size` or passing a tensor of images.
|
386 |
+
ensembling_kwargs (`dict`, *optional*, defaults to `None`)
|
387 |
+
Extra dictionary with arguments for precise ensembling control. The following options are available:
|
388 |
+
- reduction (`str`, *optional*, defaults to `"closest"`): Defines the ensembling function applied in
|
389 |
+
every pixel location, can be either `"closest"` or `"mean"`.
|
390 |
+
latents (`torch.Tensor`, *optional*, defaults to `None`):
|
391 |
+
Latent noise tensors to replace the random initialization. These can be taken from the previous
|
392 |
+
function call's output.
|
393 |
+
generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`):
|
394 |
+
Random number generator object to ensure reproducibility.
|
395 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
396 |
+
Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted
|
397 |
+
values are: `"np"` (numpy array) or `"pt"` (torch tensor).
|
398 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
399 |
+
When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that
|
400 |
+
the `ensemble_size` argument is set to a value above 2.
|
401 |
+
output_latent (`bool`, *optional*, defaults to `False`):
|
402 |
+
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
|
403 |
+
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
404 |
+
`latents` argument.
|
405 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
406 |
+
Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.
|
407 |
+
|
408 |
+
Examples:
|
409 |
+
|
410 |
+
Returns:
|
411 |
+
[`~pipelines.marigold.MarigoldNormalsOutput`] or `tuple`:
|
412 |
+
If `return_dict` is `True`, [`~pipelines.marigold.MarigoldNormalsOutput`] is returned, otherwise a
|
413 |
+
`tuple` is returned where the first element is the prediction, the second element is the uncertainty
|
414 |
+
(or `None`), and the third is the latent (or `None`).
|
415 |
+
"""
|
416 |
+
|
417 |
+
# 0. Resolving variables.
|
418 |
+
device = self._execution_device
|
419 |
+
dtype = self.dtype
|
420 |
+
|
421 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
422 |
+
if num_inference_steps is None:
|
423 |
+
num_inference_steps = self.default_denoising_steps
|
424 |
+
if processing_resolution is None:
|
425 |
+
processing_resolution = self.default_processing_resolution
|
426 |
+
|
427 |
+
# 1. Check inputs.
|
428 |
+
num_images = self.check_inputs(
|
429 |
+
image,
|
430 |
+
num_inference_steps,
|
431 |
+
ensemble_size,
|
432 |
+
processing_resolution,
|
433 |
+
resample_method_input,
|
434 |
+
resample_method_output,
|
435 |
+
batch_size,
|
436 |
+
ensembling_kwargs,
|
437 |
+
latents,
|
438 |
+
generator,
|
439 |
+
output_type,
|
440 |
+
output_uncertainty,
|
441 |
+
)
|
442 |
+
|
443 |
+
|
444 |
+
# 2. Prepare empty text conditioning.
|
445 |
+
# Model invocation: self.tokenizer, self.text_encoder.
|
446 |
+
if self.empty_text_embedding is None:
|
447 |
+
prompt = ""
|
448 |
+
text_inputs = self.tokenizer(
|
449 |
+
prompt,
|
450 |
+
padding="do_not_pad",
|
451 |
+
max_length=self.tokenizer.model_max_length,
|
452 |
+
truncation=True,
|
453 |
+
return_tensors="pt",
|
454 |
+
)
|
455 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
456 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
|
457 |
+
|
458 |
+
|
459 |
+
|
460 |
+
# 3. prepare prompt
|
461 |
+
if self.prompt_embeds is None:
|
462 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
463 |
+
self.prompt,
|
464 |
+
device,
|
465 |
+
num_images_per_prompt,
|
466 |
+
False,
|
467 |
+
negative_prompt,
|
468 |
+
prompt_embeds=prompt_embeds,
|
469 |
+
negative_prompt_embeds=None,
|
470 |
+
lora_scale=None,
|
471 |
+
clip_skip=None,
|
472 |
+
)
|
473 |
+
self.prompt_embeds = prompt_embeds
|
474 |
+
self.negative_prompt_embeds = negative_prompt_embeds
|
475 |
+
|
476 |
+
|
477 |
+
|
478 |
+
# 4. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
|
479 |
+
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
|
480 |
+
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
|
481 |
+
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
|
482 |
+
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
|
483 |
+
# operation and leads to the most reasonable results. Using the native image resolution or any other processing
|
484 |
+
# resolution can lead to loss of either fine details or global context in the output predictions.
|
485 |
+
if not skip_preprocess:
|
486 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
487 |
+
image, processing_resolution, resample_method_input, device, dtype
|
488 |
+
) # [N,3,PPH,PPW]
|
489 |
+
else:
|
490 |
+
padding = (0, 0)
|
491 |
+
original_resolution = image.shape[2:]
|
492 |
+
# 5. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
|
493 |
+
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
|
494 |
+
# Latents of each such predictions across all input images and all ensemble members are represented in the
|
495 |
+
# `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
|
496 |
+
# into latent space and replicated `E` times. The latents can be either generated (see `generator` to ensure
|
497 |
+
# reproducibility), or passed explicitly via the `latents` argument. The latter can be set outside the pipeline
|
498 |
+
# code. For example, in the Marigold-LCM video processing demo, the latents initialization of a frame is taken
|
499 |
+
# as a convex combination of the latents output of the pipeline for the previous frame and a newly-sampled
|
500 |
+
# noise. This behavior can be achieved by setting the `output_latent` argument to `True`. The latent space
|
501 |
+
# dimensions are `(h, w)`. Encoding into latent space happens in batches of size `batch_size`.
|
502 |
+
# Model invocation: self.vae.encoder.
|
503 |
+
image_latent, pred_latent = self.prepare_latents(
|
504 |
+
image, latents, generator, ensemble_size, batch_size
|
505 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
506 |
+
|
507 |
+
gaus_noise = pred_latent.detach().clone()
|
508 |
+
del image
|
509 |
+
|
510 |
+
|
511 |
+
# 6. obtain control_output
|
512 |
+
|
513 |
+
cond_scale =controlnet_conditioning_scale
|
514 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
515 |
+
image_latent.detach(),
|
516 |
+
self.t_start,
|
517 |
+
encoder_hidden_states=self.prompt_embeds,
|
518 |
+
conditioning_scale=cond_scale,
|
519 |
+
guess_mode=False,
|
520 |
+
return_dict=False,
|
521 |
+
)
|
522 |
+
|
523 |
+
# 7. Onestep sampling
|
524 |
+
latent_x_t = self.unet(
|
525 |
+
pred_latent,
|
526 |
+
self.t_start,
|
527 |
+
encoder_hidden_states=self.prompt_embeds,
|
528 |
+
down_block_additional_residuals=down_block_res_samples,
|
529 |
+
mid_block_additional_residual=mid_block_res_sample,
|
530 |
+
return_dict=False,
|
531 |
+
)[0]
|
532 |
+
|
533 |
+
|
534 |
+
del (
|
535 |
+
pred_latent,
|
536 |
+
image_latent,
|
537 |
+
)
|
538 |
+
|
539 |
+
# decoder
|
540 |
+
prediction = self.decode_prediction(latent_x_t)
|
541 |
+
|
542 |
+
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E,3,PH,PW]
|
543 |
+
|
544 |
+
prediction = self.image_processor.resize_antialias(
|
545 |
+
prediction, original_resolution, resample_method_output, is_aa=False
|
546 |
+
) # [N,3,H,W]
|
547 |
+
|
548 |
+
if output_type == "np":
|
549 |
+
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,3]
|
550 |
+
|
551 |
+
# 11. Offload all models
|
552 |
+
self.maybe_free_model_hooks()
|
553 |
+
|
554 |
+
return DAIOutput(
|
555 |
+
prediction=prediction,
|
556 |
+
latent=latent_x_t,
|
557 |
+
gaus_noise=gaus_noise,
|
558 |
+
)
|
559 |
+
|
560 |
+
# Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
|
561 |
+
def prepare_latents(
|
562 |
+
self,
|
563 |
+
image: torch.Tensor,
|
564 |
+
latents: Optional[torch.Tensor],
|
565 |
+
generator: Optional[torch.Generator],
|
566 |
+
ensemble_size: int,
|
567 |
+
batch_size: int,
|
568 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
569 |
+
def retrieve_latents(encoder_output):
|
570 |
+
if hasattr(encoder_output, "latent_dist"):
|
571 |
+
return encoder_output.latent_dist.mode()
|
572 |
+
elif hasattr(encoder_output, "latents"):
|
573 |
+
return encoder_output.latents
|
574 |
+
else:
|
575 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
image_latent = torch.cat(
|
580 |
+
[
|
581 |
+
retrieve_latents(self.vae.encode(image[i : i + batch_size]))
|
582 |
+
for i in range(0, image.shape[0], batch_size)
|
583 |
+
],
|
584 |
+
dim=0,
|
585 |
+
) # [N,4,h,w]
|
586 |
+
image_latent = image_latent * self.vae.config.scaling_factor
|
587 |
+
image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) # [N*E,4,h,w]
|
588 |
+
|
589 |
+
pred_latent = torch.zeros_like(image_latent)
|
590 |
+
if pred_latent is None:
|
591 |
+
pred_latent = randn_tensor(
|
592 |
+
image_latent.shape,
|
593 |
+
generator=generator,
|
594 |
+
device=image_latent.device,
|
595 |
+
dtype=image_latent.dtype,
|
596 |
+
) # [N*E,4,h,w]
|
597 |
+
|
598 |
+
return image_latent, pred_latent
|
599 |
+
|
600 |
+
def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
|
601 |
+
if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
|
602 |
+
raise ValueError(
|
603 |
+
f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
|
604 |
+
)
|
605 |
+
|
606 |
+
prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] # [B,3,H,W]
|
607 |
+
|
608 |
+
return prediction # [B,3,H,W]
|
609 |
+
|
610 |
+
@staticmethod
|
611 |
+
def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
|
612 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
613 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
614 |
+
|
615 |
+
norm = torch.norm(normals, dim=1, keepdim=True)
|
616 |
+
normals /= norm.clamp(min=eps)
|
617 |
+
|
618 |
+
return normals
|
619 |
+
|
620 |
+
@staticmethod
|
621 |
+
def ensemble_normals(
|
622 |
+
normals: torch.Tensor, output_uncertainty: bool, reduction: str = "closest"
|
623 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
624 |
+
"""
|
625 |
+
Ensembles the normals maps represented by the `normals` tensor with expected shape `(B, 3, H, W)`, where B is
|
626 |
+
the number of ensemble members for a given prediction of size `(H x W)`.
|
627 |
+
|
628 |
+
Args:
|
629 |
+
normals (`torch.Tensor`):
|
630 |
+
Input ensemble normals maps.
|
631 |
+
output_uncertainty (`bool`, *optional*, defaults to `False`):
|
632 |
+
Whether to output uncertainty map.
|
633 |
+
reduction (`str`, *optional*, defaults to `"closest"`):
|
634 |
+
Reduction method used to ensemble aligned predictions. The accepted values are: `"closest"` and
|
635 |
+
`"mean"`.
|
636 |
+
|
637 |
+
Returns:
|
638 |
+
A tensor of aligned and ensembled normals maps with shape `(1, 3, H, W)` and optionally a tensor of
|
639 |
+
uncertainties of shape `(1, 1, H, W)`.
|
640 |
+
"""
|
641 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
642 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
643 |
+
if reduction not in ("closest", "mean"):
|
644 |
+
raise ValueError(f"Unrecognized reduction method: {reduction}.")
|
645 |
+
|
646 |
+
mean_normals = normals.mean(dim=0, keepdim=True) # [1,3,H,W]
|
647 |
+
mean_normals = MarigoldNormalsPipeline.normalize_normals(mean_normals) # [1,3,H,W]
|
648 |
+
|
649 |
+
sim_cos = (mean_normals * normals).sum(dim=1, keepdim=True) # [E,1,H,W]
|
650 |
+
sim_cos = sim_cos.clamp(-1, 1) # required to avoid NaN in uncertainty with fp16
|
651 |
+
|
652 |
+
uncertainty = None
|
653 |
+
if output_uncertainty:
|
654 |
+
uncertainty = sim_cos.arccos() # [E,1,H,W]
|
655 |
+
uncertainty = uncertainty.mean(dim=0, keepdim=True) / np.pi # [1,1,H,W]
|
656 |
+
|
657 |
+
if reduction == "mean":
|
658 |
+
return mean_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
659 |
+
|
660 |
+
closest_indices = sim_cos.argmax(dim=0, keepdim=True) # [1,1,H,W]
|
661 |
+
closest_indices = closest_indices.repeat(1, 3, 1, 1) # [1,3,H,W]
|
662 |
+
closest_normals = torch.gather(normals, 0, closest_indices) # [1,3,H,W]
|
663 |
+
|
664 |
+
return closest_normals, uncertainty # [1,3,H,W], [1,1,H,W]
|
665 |
+
|
666 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
667 |
+
def retrieve_timesteps(
|
668 |
+
scheduler,
|
669 |
+
num_inference_steps: Optional[int] = None,
|
670 |
+
device: Optional[Union[str, torch.device]] = None,
|
671 |
+
timesteps: Optional[List[int]] = None,
|
672 |
+
sigmas: Optional[List[float]] = None,
|
673 |
+
**kwargs,
|
674 |
+
):
|
675 |
+
"""
|
676 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
677 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
scheduler (`SchedulerMixin`):
|
681 |
+
The scheduler to get timesteps from.
|
682 |
+
num_inference_steps (`int`):
|
683 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
684 |
+
must be `None`.
|
685 |
+
device (`str` or `torch.device`, *optional*):
|
686 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
687 |
+
timesteps (`List[int]`, *optional*):
|
688 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
689 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
690 |
+
sigmas (`List[float]`, *optional*):
|
691 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
692 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
696 |
+
second element is the number of inference steps.
|
697 |
+
"""
|
698 |
+
if timesteps is not None and sigmas is not None:
|
699 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
700 |
+
if timesteps is not None:
|
701 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
702 |
+
if not accepts_timesteps:
|
703 |
+
raise ValueError(
|
704 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
705 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
706 |
+
)
|
707 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
708 |
+
timesteps = scheduler.timesteps
|
709 |
+
num_inference_steps = len(timesteps)
|
710 |
+
elif sigmas is not None:
|
711 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
712 |
+
if not accept_sigmas:
|
713 |
+
raise ValueError(
|
714 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
715 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
716 |
+
)
|
717 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
718 |
+
timesteps = scheduler.timesteps
|
719 |
+
num_inference_steps = len(timesteps)
|
720 |
+
else:
|
721 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
722 |
+
timesteps = scheduler.timesteps
|
723 |
+
return timesteps, num_inference_steps
|
app.py
CHANGED
@@ -1,7 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
+
import functools
|
22 |
+
import os
|
23 |
+
import tempfile
|
24 |
+
|
25 |
import gradio as gr
|
26 |
+
import imageio as imageio
|
27 |
+
import numpy as np
|
28 |
+
import spaces
|
29 |
+
import torch as torch
|
30 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
+
from PIL import Image
|
32 |
+
from gradio_imageslider import ImageSlider
|
33 |
+
from tqdm import tqdm
|
34 |
+
|
35 |
+
from pathlib import Path
|
36 |
+
import gradio
|
37 |
+
from gradio.utils import get_cache_folder
|
38 |
+
from DAI.pipeline_all import DAIPipeline
|
39 |
+
|
40 |
+
from diffusers import (
|
41 |
+
AutoencoderKL,
|
42 |
+
UNet2DConditionModel,
|
43 |
+
)
|
44 |
+
|
45 |
+
from transformers import CLIPTextModel, AutoTokenizer
|
46 |
+
|
47 |
+
from DAI.controlnetvae import ControlNetVAEModel
|
48 |
+
|
49 |
+
from DAI.decoder import CustomAutoencoderKL
|
50 |
+
|
51 |
+
|
52 |
+
class Examples(gradio.helpers.Examples):
|
53 |
+
def __init__(self, *args, directory_name=None, **kwargs):
|
54 |
+
super().__init__(*args, **kwargs, _initiated_directly=False)
|
55 |
+
if directory_name is not None:
|
56 |
+
self.cached_folder = get_cache_folder() / directory_name
|
57 |
+
self.cached_file = Path(self.cached_folder) / "log.csv"
|
58 |
+
self.create()
|
59 |
+
|
60 |
+
|
61 |
+
default_seed = 2024
|
62 |
+
default_batch_size = 1
|
63 |
+
|
64 |
+
def process_image_check(path_input):
|
65 |
+
if path_input is None:
|
66 |
+
raise gr.Error(
|
67 |
+
"Missing image in the first pane: upload a file or use one from the gallery below."
|
68 |
+
)
|
69 |
+
|
70 |
+
def resize_image(input_image, resolution):
|
71 |
+
# Ensure input_image is a PIL Image object
|
72 |
+
if not isinstance(input_image, Image.Image):
|
73 |
+
raise ValueError("input_image should be a PIL Image object")
|
74 |
+
|
75 |
+
# Convert image to numpy array
|
76 |
+
input_image_np = np.asarray(input_image)
|
77 |
+
|
78 |
+
# Get image dimensions
|
79 |
+
H, W, C = input_image_np.shape
|
80 |
+
H = float(H)
|
81 |
+
W = float(W)
|
82 |
+
|
83 |
+
# Calculate the scaling factor
|
84 |
+
k = float(resolution) / min(H, W)
|
85 |
+
|
86 |
+
# Determine new dimensions
|
87 |
+
H *= k
|
88 |
+
W *= k
|
89 |
+
H = int(np.round(H / 64.0)) * 64
|
90 |
+
W = int(np.round(W / 64.0)) * 64
|
91 |
+
|
92 |
+
# Resize the image using PIL's resize method
|
93 |
+
img = input_image.resize((W, H), Image.Resampling.LANCZOS)
|
94 |
+
|
95 |
+
return img
|
96 |
+
|
97 |
+
def process_image(
|
98 |
+
pipe,
|
99 |
+
vae_2,
|
100 |
+
path_input,
|
101 |
+
):
|
102 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
103 |
+
print(f"Processing image {name_base}{name_ext}")
|
104 |
+
|
105 |
+
path_output_dir = tempfile.mkdtemp()
|
106 |
+
path_out_png = os.path.join(path_output_dir, f"{name_base}_delight.png")
|
107 |
+
input_image = Image.open(path_input)
|
108 |
+
resolution = None
|
109 |
+
|
110 |
+
pipe_out = pipe(
|
111 |
+
image=input_image,
|
112 |
+
prompt="remove glass reflection",
|
113 |
+
vae_2=vae_2,
|
114 |
+
processing_resolution=resolution,
|
115 |
+
)
|
116 |
+
|
117 |
+
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
118 |
+
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
119 |
+
processed_frame = Image.fromarray(processed_frame)
|
120 |
+
processed_frame.save(path_out_png)
|
121 |
+
yield [input_image, path_out_png]
|
122 |
+
|
123 |
+
def run_demo_server(pipe, vae_2):
|
124 |
+
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe, vae_2))
|
125 |
+
|
126 |
+
gradio_theme = gr.themes.Default()
|
127 |
+
|
128 |
+
with gr.Blocks(
|
129 |
+
theme=gradio_theme,
|
130 |
+
title="Dereflection Any Image",
|
131 |
+
css="""
|
132 |
+
#download {
|
133 |
+
height: 118px;
|
134 |
+
}
|
135 |
+
.slider .inner {
|
136 |
+
width: 5px;
|
137 |
+
background: #FFF;
|
138 |
+
}
|
139 |
+
.viewport {
|
140 |
+
aspect-ratio: 4/3;
|
141 |
+
}
|
142 |
+
.tabs button.selected {
|
143 |
+
font-size: 20px !important;
|
144 |
+
color: crimson !important;
|
145 |
+
}
|
146 |
+
h1 {
|
147 |
+
text-align: center;
|
148 |
+
display: block;
|
149 |
+
}
|
150 |
+
h2 {
|
151 |
+
text-align: center;
|
152 |
+
display: block;
|
153 |
+
}
|
154 |
+
h3 {
|
155 |
+
text-align: center;
|
156 |
+
display: block;
|
157 |
+
}
|
158 |
+
.md_feedback li {
|
159 |
+
margin-bottom: 0px !important;
|
160 |
+
}
|
161 |
+
""",
|
162 |
+
head="""
|
163 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
164 |
+
<script>
|
165 |
+
window.dataLayer = window.dataLayer || [];
|
166 |
+
function gtag() {dataLayer.push(arguments);}
|
167 |
+
gtag('js', new Date());
|
168 |
+
gtag('config', 'G-1FWSVCGZTG');
|
169 |
+
</script>
|
170 |
+
""",
|
171 |
+
) as demo:
|
172 |
+
gr.Markdown(
|
173 |
+
"""
|
174 |
+
# Dereflection Any Image
|
175 |
+
<p align="center">
|
176 |
+
"""
|
177 |
+
)
|
178 |
+
|
179 |
+
with gr.Tabs(elem_classes=["tabs"]):
|
180 |
+
with gr.Tab("Image"):
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
image_input = gr.Image(
|
184 |
+
label="Input Image",
|
185 |
+
type="filepath",
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
image_submit_btn = gr.Button(
|
189 |
+
value="remove reflection", variant="primary"
|
190 |
+
)
|
191 |
+
image_reset_btn = gr.Button(value="Reset")
|
192 |
+
with gr.Column():
|
193 |
+
image_output_slider = ImageSlider(
|
194 |
+
label="outputs",
|
195 |
+
type="filepath",
|
196 |
+
show_download_button=True,
|
197 |
+
show_share_button=True,
|
198 |
+
interactive=False,
|
199 |
+
elem_classes="slider",
|
200 |
+
# position=0.25,
|
201 |
+
)
|
202 |
+
|
203 |
+
Examples(
|
204 |
+
fn=process_pipe_image,
|
205 |
+
examples=sorted([
|
206 |
+
os.path.join("files", "image", name)
|
207 |
+
for name in os.listdir(os.path.join("files", "image"))
|
208 |
+
]),
|
209 |
+
inputs=[image_input],
|
210 |
+
outputs=[image_output_slider],
|
211 |
+
cache_examples=False,
|
212 |
+
directory_name="examples_image",
|
213 |
+
)
|
214 |
+
|
215 |
+
|
216 |
+
### Image tab
|
217 |
+
image_submit_btn.click(
|
218 |
+
fn=process_image_check,
|
219 |
+
inputs=image_input,
|
220 |
+
outputs=None,
|
221 |
+
preprocess=False,
|
222 |
+
queue=False,
|
223 |
+
).success(
|
224 |
+
fn=process_pipe_image,
|
225 |
+
inputs=[
|
226 |
+
image_input,
|
227 |
+
],
|
228 |
+
outputs=[image_output_slider],
|
229 |
+
concurrency_limit=1,
|
230 |
+
)
|
231 |
+
|
232 |
+
image_reset_btn.click(
|
233 |
+
fn=lambda: (
|
234 |
+
None,
|
235 |
+
None,
|
236 |
+
None,
|
237 |
+
),
|
238 |
+
inputs=[],
|
239 |
+
outputs=[
|
240 |
+
image_input,
|
241 |
+
image_output_slider,
|
242 |
+
],
|
243 |
+
queue=False,
|
244 |
+
)
|
245 |
+
|
246 |
+
|
247 |
+
### Server launch
|
248 |
+
|
249 |
+
demo.queue(
|
250 |
+
api_open=False,
|
251 |
+
).launch(
|
252 |
+
server_name="0.0.0.0",
|
253 |
+
server_port=7860,
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
def main():
|
258 |
+
os.system("pip freeze")
|
259 |
+
|
260 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
261 |
+
|
262 |
+
weight_dtype = torch.float32
|
263 |
+
model_dir = "./weights"
|
264 |
+
pretrained_model_name_or_path = "JichenHu/dereflection-any-image-v0"
|
265 |
+
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
266 |
+
revision = None
|
267 |
+
variant = None
|
268 |
+
# Load the model
|
269 |
+
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
|
270 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
|
271 |
+
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
|
272 |
+
|
273 |
+
# Load other components of the pipeline
|
274 |
+
vae = AutoencoderKL.from_pretrained(
|
275 |
+
pretrained_model_name_or_path2, subfolder="vae", revision=revision, variant=variant
|
276 |
+
).to(device)
|
277 |
+
|
278 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
279 |
+
pretrained_model_name_or_path2, subfolder="text_encoder", revision=revision, variant=variant
|
280 |
+
).to(device)
|
281 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
282 |
+
pretrained_model_name_or_path2,
|
283 |
+
subfolder="tokenizer",
|
284 |
+
revision=revision,
|
285 |
+
use_fast=False,
|
286 |
+
)
|
287 |
+
pipe = DAIPipeline(
|
288 |
+
vae=vae,
|
289 |
+
text_encoder=text_encoder,
|
290 |
+
tokenizer=tokenizer,
|
291 |
+
unet=unet,
|
292 |
+
controlnet=controlnet,
|
293 |
+
safety_checker=None,
|
294 |
+
scheduler=None,
|
295 |
+
feature_extractor=None,
|
296 |
+
t_start=0,
|
297 |
+
).to(device)
|
298 |
+
|
299 |
+
try:
|
300 |
+
import xformers
|
301 |
+
pipe.enable_xformers_memory_efficient_attention()
|
302 |
+
except:
|
303 |
+
pass # run without xformers
|
304 |
+
|
305 |
+
run_demo_server(pipe, vae_2)
|
306 |
|
|
|
|
|
307 |
|
308 |
+
if __name__ == "__main__":
|
309 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
gradio
|
3 |
+
gradio_imageslider
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
pillow
|
7 |
+
numpy
|
8 |
+
xformers
|
utils/image_utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
def mse(img1, img2):
|
15 |
+
return (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
|
16 |
+
|
17 |
+
def psnr(img1, img2):
|
18 |
+
mse = (((img1 - img2)) ** 2).view(img1.shape[0], -1).mean(1, keepdim=True)
|
19 |
+
return 20 * torch.log10(1.0 / torch.sqrt(mse))
|
20 |
+
|
21 |
+
# torchmetrics
|
utils/loss_utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2023, Inria
|
3 |
+
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# This software is free for non-commercial, research and evaluation use
|
7 |
+
# under the terms of the LICENSE.md file.
|
8 |
+
#
|
9 |
+
# For inquiries contact [email protected]
|
10 |
+
#
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.autograd import Variable
|
15 |
+
from math import exp
|
16 |
+
|
17 |
+
def l1_loss(network_output, gt):
|
18 |
+
return torch.abs((network_output - gt)).mean()
|
19 |
+
|
20 |
+
def l2_loss(network_output, gt):
|
21 |
+
return ((network_output - gt) ** 2).mean()
|
22 |
+
|
23 |
+
def gaussian(window_size, sigma):
|
24 |
+
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
|
25 |
+
return gauss / gauss.sum()
|
26 |
+
|
27 |
+
def create_window(window_size, channel):
|
28 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
29 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
30 |
+
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
31 |
+
return window
|
32 |
+
|
33 |
+
def ssim(img1, img2, window_size=11, size_average=True):
|
34 |
+
channel = img1.size(-3)
|
35 |
+
window = create_window(window_size, channel)
|
36 |
+
|
37 |
+
if img1.is_cuda:
|
38 |
+
window = window.cuda(img1.get_device())
|
39 |
+
window = window.type_as(img1)
|
40 |
+
|
41 |
+
return _ssim(img1, img2, window, window_size, channel, size_average)
|
42 |
+
|
43 |
+
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
44 |
+
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
45 |
+
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
46 |
+
|
47 |
+
mu1_sq = mu1.pow(2)
|
48 |
+
mu2_sq = mu2.pow(2)
|
49 |
+
mu1_mu2 = mu1 * mu2
|
50 |
+
|
51 |
+
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
|
52 |
+
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
|
53 |
+
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
|
54 |
+
|
55 |
+
C1 = 0.01 ** 2
|
56 |
+
C2 = 0.03 ** 2
|
57 |
+
|
58 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
59 |
+
|
60 |
+
if size_average:
|
61 |
+
return ssim_map.mean()
|
62 |
+
else:
|
63 |
+
return ssim_map.mean(1).mean(1).mean(1)
|
64 |
+
|