Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,46 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import functools
|
5 |
import os
|
6 |
import tempfile
|
|
|
|
|
|
|
7 |
import numpy as np
|
|
|
8 |
import torch as torch
|
9 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
from diffusers import (
|
12 |
AutoencoderKL,
|
@@ -15,26 +49,46 @@ from diffusers import (
|
|
15 |
|
16 |
from transformers import CLIPTextModel, AutoTokenizer
|
17 |
|
18 |
-
from DAI.pipeline_all import DAIPipeline
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
from DAI.decoder import CustomAutoencoderKL
|
23 |
|
24 |
-
def
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
print(f"Processing image {name_base}{name_ext}")
|
31 |
|
32 |
path_output_dir = tempfile.mkdtemp()
|
33 |
path_out_png = os.path.join(path_output_dir, f"{name_base}_delight.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
resolution = None
|
35 |
|
36 |
pipe_out = pipe(
|
37 |
-
image=
|
38 |
prompt="remove glass reflection",
|
39 |
vae_2=vae_2,
|
40 |
processing_resolution=resolution,
|
@@ -44,13 +98,148 @@ def process_image(pipe, vae_2, image):
|
|
44 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
45 |
processed_frame = Image.fromarray(processed_frame)
|
46 |
processed_frame.save(path_out_png)
|
|
|
47 |
|
48 |
-
return processed_frame
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
52 |
weight_dtype = torch.float32
|
53 |
-
pretrained_model_name_or_path = "
|
54 |
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
55 |
revision = None
|
56 |
variant = None
|
@@ -91,23 +280,8 @@ if __name__ == "__main__":
|
|
91 |
except:
|
92 |
pass # run without xformers
|
93 |
|
94 |
-
|
95 |
-
example_images_dir = "files/image"
|
96 |
-
example_images = []
|
97 |
-
for i in range(1, 9):
|
98 |
-
image_path = os.path.join(example_images_dir, f"{i}.png")
|
99 |
-
if os.path.exists(image_path):
|
100 |
-
example_images.append([Image.open(image_path)])
|
101 |
-
|
102 |
-
# Create a Gradio interface
|
103 |
-
interface = gr.Interface(
|
104 |
-
fn=spaces.GPU(functools.partial(process_image, pipe, vae_2)),
|
105 |
-
inputs=gr.Image(type="pil"),
|
106 |
-
outputs=gr.Image(type="pil"),
|
107 |
-
title="Dereflection Any Image",
|
108 |
-
description="Upload an image to remove glass reflections.",
|
109 |
-
examples=example_images,
|
110 |
-
)
|
111 |
|
112 |
-
interface.launch()
|
113 |
|
|
|
|
|
|
1 |
+
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# --------------------------------------------------------------------------
|
15 |
+
# If you find this code useful, we kindly ask you to cite our paper in your work.
|
16 |
+
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
|
17 |
+
# More information about the method can be found at https://marigoldmonodepth.github.io
|
18 |
+
# --------------------------------------------------------------------------
|
19 |
+
from __future__ import annotations
|
20 |
+
|
21 |
import functools
|
22 |
import os
|
23 |
import tempfile
|
24 |
+
|
25 |
+
import gradio as gr
|
26 |
+
import imageio as imageio
|
27 |
import numpy as np
|
28 |
+
import spaces
|
29 |
import torch as torch
|
30 |
torch.backends.cuda.matmul.allow_tf32 = True
|
31 |
+
from PIL import Image
|
32 |
+
from gradio_imageslider import ImageSlider
|
33 |
+
from tqdm import tqdm
|
34 |
+
|
35 |
+
from pathlib import Path
|
36 |
+
import gradio
|
37 |
+
from gradio.utils import get_cache_folder
|
38 |
+
|
39 |
+
from DAI.pipeline_all import DAIPipeline
|
40 |
+
|
41 |
+
from DAI.controlnetvae import ControlNetVAEModel
|
42 |
+
|
43 |
+
from DAI.decoder import CustomAutoencoderKL
|
44 |
|
45 |
from diffusers import (
|
46 |
AutoencoderKL,
|
|
|
49 |
|
50 |
from transformers import CLIPTextModel, AutoTokenizer
|
51 |
|
|
|
52 |
|
53 |
+
class Examples(gradio.helpers.Examples):
|
54 |
+
def __init__(self, *args, directory_name=None, **kwargs):
|
55 |
+
super().__init__(*args, **kwargs, _initiated_directly=False)
|
56 |
+
if directory_name is not None:
|
57 |
+
self.cached_folder = get_cache_folder() / directory_name
|
58 |
+
self.cached_file = Path(self.cached_folder) / "log.csv"
|
59 |
+
self.create()
|
60 |
|
|
|
61 |
|
62 |
+
def process_image_check(path_input):
|
63 |
+
if path_input is None:
|
64 |
+
raise gr.Error(
|
65 |
+
"Missing image in the first pane: upload a file or use one from the gallery below."
|
66 |
+
)
|
67 |
|
68 |
+
def process_image(
|
69 |
+
pipe,
|
70 |
+
vae_2,
|
71 |
+
path_input,
|
72 |
+
):
|
73 |
+
name_base, name_ext = os.path.splitext(os.path.basename(path_input))
|
74 |
print(f"Processing image {name_base}{name_ext}")
|
75 |
|
76 |
path_output_dir = tempfile.mkdtemp()
|
77 |
path_out_png = os.path.join(path_output_dir, f"{name_base}_delight.png")
|
78 |
+
input_image = Image.open(path_input)
|
79 |
+
# pipe_out = pipe(
|
80 |
+
# input_image,
|
81 |
+
# match_input_resolution=False,
|
82 |
+
# processing_resolution=default_image_processing_resolution
|
83 |
+
# )
|
84 |
+
|
85 |
+
# resolution = 0
|
86 |
+
# if max(input_image.size) < 768:
|
87 |
+
# resolution = None
|
88 |
resolution = None
|
89 |
|
90 |
pipe_out = pipe(
|
91 |
+
image=input_image,
|
92 |
prompt="remove glass reflection",
|
93 |
vae_2=vae_2,
|
94 |
processing_resolution=resolution,
|
|
|
98 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
99 |
processed_frame = Image.fromarray(processed_frame)
|
100 |
processed_frame.save(path_out_png)
|
101 |
+
yield [input_image, path_out_png]
|
102 |
|
|
|
103 |
|
104 |
+
def run_demo_server(pipe, vae_2):
|
105 |
+
process_pipe_image = spaces.GPU(functools.partial(process_image, pipe, vae_2))
|
106 |
+
|
107 |
+
gradio_theme = gr.themes.Default()
|
108 |
+
|
109 |
+
with gr.Blocks(
|
110 |
+
theme=gradio_theme,
|
111 |
+
title="DAI",
|
112 |
+
css="""
|
113 |
+
#download {
|
114 |
+
height: 118px;
|
115 |
+
}
|
116 |
+
.slider .inner {
|
117 |
+
width: 5px;
|
118 |
+
background: #FFF;
|
119 |
+
}
|
120 |
+
.viewport {
|
121 |
+
aspect-ratio: 4/3;
|
122 |
+
}
|
123 |
+
.tabs button.selected {
|
124 |
+
font-size: 20px !important;
|
125 |
+
color: crimson !important;
|
126 |
+
}
|
127 |
+
h1 {
|
128 |
+
text-align: center;
|
129 |
+
display: block;
|
130 |
+
}
|
131 |
+
h2 {
|
132 |
+
text-align: center;
|
133 |
+
display: block;
|
134 |
+
}
|
135 |
+
h3 {
|
136 |
+
text-align: center;
|
137 |
+
display: block;
|
138 |
+
}
|
139 |
+
.md_feedback li {
|
140 |
+
margin-bottom: 0px !important;
|
141 |
+
}
|
142 |
+
""",
|
143 |
+
head="""
|
144 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
145 |
+
<script>
|
146 |
+
window.dataLayer = window.dataLayer || [];
|
147 |
+
function gtag() {dataLayer.push(arguments);}
|
148 |
+
gtag('js', new Date());
|
149 |
+
gtag('config', 'G-1FWSVCGZTG');
|
150 |
+
</script>
|
151 |
+
""",
|
152 |
+
) as demo:
|
153 |
+
gr.Markdown(
|
154 |
+
"""
|
155 |
+
# Dereflection Any Image
|
156 |
+
<p align="center">
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
|
160 |
+
with gr.Tabs(elem_classes=["tabs"]):
|
161 |
+
with gr.Tab("Image"):
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column():
|
164 |
+
image_input = gr.Image(
|
165 |
+
label="Input Image",
|
166 |
+
type="filepath",
|
167 |
+
)
|
168 |
+
with gr.Row():
|
169 |
+
image_submit_btn = gr.Button(
|
170 |
+
value="Dereflection", variant="primary"
|
171 |
+
)
|
172 |
+
image_reset_btn = gr.Button(value="Reset")
|
173 |
+
with gr.Column():
|
174 |
+
image_output_slider = ImageSlider(
|
175 |
+
label="outputs",
|
176 |
+
type="filepath",
|
177 |
+
show_download_button=True,
|
178 |
+
show_share_button=True,
|
179 |
+
interactive=False,
|
180 |
+
elem_classes="slider",
|
181 |
+
# position=0.25,
|
182 |
+
)
|
183 |
+
|
184 |
+
Examples(
|
185 |
+
fn=process_pipe_image,
|
186 |
+
examples=sorted([
|
187 |
+
os.path.join("files", "image", name)
|
188 |
+
for name in os.listdir(os.path.join("files", "image"))
|
189 |
+
]),
|
190 |
+
inputs=[image_input],
|
191 |
+
outputs=[image_output_slider],
|
192 |
+
cache_examples=False,
|
193 |
+
directory_name="examples_image",
|
194 |
+
)
|
195 |
+
|
196 |
+
### Image tab
|
197 |
+
image_submit_btn.click(
|
198 |
+
fn=process_image_check,
|
199 |
+
inputs=image_input,
|
200 |
+
outputs=None,
|
201 |
+
preprocess=False,
|
202 |
+
queue=False,
|
203 |
+
).success(
|
204 |
+
fn=process_pipe_image,
|
205 |
+
inputs=[
|
206 |
+
image_input,
|
207 |
+
],
|
208 |
+
outputs=[image_output_slider],
|
209 |
+
concurrency_limit=1,
|
210 |
+
)
|
211 |
+
|
212 |
+
image_reset_btn.click(
|
213 |
+
fn=lambda: (
|
214 |
+
None,
|
215 |
+
None,
|
216 |
+
None,
|
217 |
+
),
|
218 |
+
inputs=[],
|
219 |
+
outputs=[
|
220 |
+
image_input,
|
221 |
+
image_output_slider,
|
222 |
+
],
|
223 |
+
queue=False,
|
224 |
+
)
|
225 |
+
|
226 |
+
### Server launch
|
227 |
+
|
228 |
+
demo.queue(
|
229 |
+
api_open=False,
|
230 |
+
).launch(
|
231 |
+
server_name="0.0.0.0",
|
232 |
+
server_port=7860,
|
233 |
+
)
|
234 |
+
|
235 |
+
|
236 |
+
def main():
|
237 |
+
os.system("pip freeze")
|
238 |
+
|
239 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
240 |
+
|
241 |
weight_dtype = torch.float32
|
242 |
+
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
243 |
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
244 |
revision = None
|
245 |
variant = None
|
|
|
280 |
except:
|
281 |
pass # run without xformers
|
282 |
|
283 |
+
run_demo_server(pipe, vae_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
|
|
285 |
|
286 |
+
if __name__ == "__main__":
|
287 |
+
main()
|