import spaces # 必须放在最前面 import os import numpy as np import torch from PIL import Image import gradio as gr # 延迟 CUDA 初始化 weight_dtype = torch.float32 # 加载模型组件 from DAI.pipeline_all import DAIPipeline from DAI.controlnetvae import ControlNetVAEModel from DAI.decoder import CustomAutoencoderKL from diffusers import AutoencoderKL, UNet2DConditionModel from transformers import CLIPTextModel, AutoTokenizer pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0" pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 加载模型 controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device) unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device) vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device) vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device) text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device) tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False) # 创建推理管道 pipe = DAIPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, safety_checker=None, scheduler=None, feature_extractor=None, t_start=0, ).to(device) def resize_image(image, max_size): """Resize the image so that the maximum side is max_size.""" width, height = image.size if max(width, height) > max_size: if width > height: new_width = max_size new_height = int(height * (max_size / width)) else: new_height = max_size new_width = int(width * (max_size / height)) image = image.resize((new_width, new_height), Image.LANCZOS) return image @spaces.GPU def process_image(input_image, resolution_choice): # 将 Gradio 输入转换为 PIL 图像 input_image = Image.fromarray(input_image) # 根据用户选择设置处理分辨率 if resolution_choice == "768": input_image = resize_image(input_image, 768) processing_resolution = None else: if input_image.size[0] > 2560 or input_image.size[1] > 2560: processing_resolution = 2560 # 限制最大分辨率 input_image = resize_image(input_image, 2560) else: processing_resolution = 0 # 使用原始分辨率 # 处理图像 pipe_out = pipe( image=input_image, prompt="remove glass reflection", vae_2=vae_2, processing_resolution=processing_resolution, ) # 将输出转换为图像 processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 processed_frame = (processed_frame[0] * 255).astype(np.uint8) processed_frame = Image.fromarray(processed_frame) return input_image, processed_frame # 返回调整后的输入图片和处理后的图片 # 创建 Gradio 界面 def create_gradio_interface(): # 示例图像 example_images = [ [os.path.join("files", "image", f"{i}.png"), "768"] for i in range(1, 14) ] title = "# Dereflection Any Image" description = """Official demo for **Dereflection Any Image**. Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details.""" with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="numpy") resolution_choice = gr.Radio( choices=["768", "Original Resolution"], label="Processing Resolution", value="768", # 默认选择原始分辨率 ) gr.Markdown( "Select the resolution for processing the image, 768 is recommended for faster processing and stable performance. Higher resolution may take longer to process, we restrict the maximum resolution to 2560." ) submit_btn = gr.Button("Remove Reflection", variant="primary") with gr.Column(): output_image = gr.Image(label="Processed Image") # 添加示例 gr.Examples( examples=example_images, inputs=[input_image, resolution_choice], # 输入组件列表 outputs=output_image, fn=process_image, cache_examples=False, # 缓存结果以加快加载速度 label="Example Images", ) # 绑定按钮点击事件 submit_btn.click( fn=process_image, inputs=[input_image, resolution_choice], # 输入组件列表 outputs=[input_image, output_image], # 输出组件列表 ) return demo # 主函数 def main(): demo = create_gradio_interface() demo.launch(server_name="0.0.0.0", server_port=7860) if __name__ == "__main__": main()