TheBeast
commited on
Commit
·
48be4c4
1
Parent(s):
63067f8
Adding a version 1 of demo for testing
Browse files- app.py +126 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Demo for NER4OPT."""
|
2 |
+
import re
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
6 |
+
|
7 |
+
import spacy
|
8 |
+
from spacy import displacy
|
9 |
+
from spacy.training import iob_to_biluo, biluo_tags_to_offsets
|
10 |
+
from spacy.tokenizer import Tokenizer
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
from simpletransformers.ner import NERModel, NERArgs
|
15 |
+
|
16 |
+
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
|
17 |
+
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_models():
|
21 |
+
"""Load custom built NER4OPT model."""
|
22 |
+
custom_labels = [
|
23 |
+
'O',
|
24 |
+
'B-CONST_DIR',
|
25 |
+
'I-CONST_DIR',
|
26 |
+
'B-LIMIT',
|
27 |
+
'I-LIMIT',
|
28 |
+
'B-VAR',
|
29 |
+
'I-VAR',
|
30 |
+
'B-OBJ_DIR',
|
31 |
+
'B-OBJ_NAME',
|
32 |
+
'I-OBJ_NAME',
|
33 |
+
'B-PARAM',
|
34 |
+
'I-PARAM',
|
35 |
+
]
|
36 |
+
# # create model
|
37 |
+
model_args = NERArgs()
|
38 |
+
model_args.use_early_stopping = True
|
39 |
+
model_args.early_stopping_delta = 0.01
|
40 |
+
model_args.early_stopping_metric = "eval_loss"
|
41 |
+
model_args.early_stopping_metric_minimize = False
|
42 |
+
model_args.early_stopping_patience = 5
|
43 |
+
model_args.evaluate_during_training_steps = 2000
|
44 |
+
model_args.overwrite_output_dir = True
|
45 |
+
model_args.reprocess_input_data = True
|
46 |
+
model_args.num_train_epochs = 11
|
47 |
+
model_args.adafactor_beta1 = 0.9
|
48 |
+
model_args.weight_decay = 0.01
|
49 |
+
model_args.max_seq_length = 512
|
50 |
+
model_args.learning_rate = 4e-5
|
51 |
+
model_args.train_batch_size = 1
|
52 |
+
model_args.eval_batch_size = 1
|
53 |
+
model_args.manual_seed = 123456789
|
54 |
+
model_args.output_dir = "trained_transformer_model"
|
55 |
+
model_args.use_cuda = True
|
56 |
+
model_args.use_multiprocessing = False
|
57 |
+
model = NERModel("roberta",
|
58 |
+
"skadio/ner4opt-roberta",
|
59 |
+
labels=custom_labels,
|
60 |
+
use_cuda=True,
|
61 |
+
args=model_args)
|
62 |
+
spacy_model = spacy.load("en_core_web_sm")
|
63 |
+
spacy_model.tokenizer = Tokenizer(spacy_model.vocab,
|
64 |
+
token_match=re.compile(r'\S+').match)
|
65 |
+
spacy_blank_model = spacy.blank('en')
|
66 |
+
spacy_blank_model.tokenizer = Tokenizer(
|
67 |
+
spacy_blank_model.vocab, token_match=re.compile(r'\S+').match)
|
68 |
+
return model, spacy_model, spacy_blank_model
|
69 |
+
|
70 |
+
|
71 |
+
def main():
|
72 |
+
|
73 |
+
st.sidebar.title("""
|
74 |
+
NER4OPT Demo: \nFull code will be available at https://github.com/skadio/Ner4Opt
|
75 |
+
""")
|
76 |
+
|
77 |
+
text = st.text_area(
|
78 |
+
"Text",
|
79 |
+
"Cautious Asset Investment has a total of $ 150,000 to manage and decides to invest it in money market fund , which yields a 2 % return as well as in foreign bonds , which gives and average rate of return of 10.2 % . Internal policies require PAI to diversify the asset allocation so that the minimum investment in money market fund is 40 % of the total investment . Due to the risk of default of foreign countries , no more than 40 % of the total investment should be allocated to foreign bonds . How much should the Cautious Asset Investment allocate in each asset so as to maximize its average return ?"
|
80 |
+
)
|
81 |
+
if text == "":
|
82 |
+
st.write("Please write a valid sentence.")
|
83 |
+
model, spacy_model, spacy_blank_model = load_models()
|
84 |
+
|
85 |
+
# Augmented Text
|
86 |
+
spacy_doc = spacy_model(text)
|
87 |
+
if len(list(spacy_doc.sents)) >= 2:
|
88 |
+
last_two_sentences = ' '.join(
|
89 |
+
[item.text for item in list(spacy_doc.sents)[-2::]])
|
90 |
+
else:
|
91 |
+
last_two_sentences = ' '.join(
|
92 |
+
[item.text for item in list(spacy_doc.sents)[-1::]])
|
93 |
+
to_skip_count = len(last_two_sentences.split())
|
94 |
+
augmented_sent = last_two_sentences + " " + text
|
95 |
+
|
96 |
+
if st.button("Get Named Entities"):
|
97 |
+
predictions, raw_outputs = model.predict([augmented_sent],
|
98 |
+
split_on_space=True)
|
99 |
+
transformer_predictions = [
|
100 |
+
list(val.values())[0] for val in predictions[0]
|
101 |
+
]
|
102 |
+
transformer_predictions = transformer_predictions[to_skip_count::]
|
103 |
+
biluo_tags = iob_to_biluo(transformer_predictions)
|
104 |
+
doc = spacy_blank_model.make_doc(text)
|
105 |
+
entities = biluo_tags_to_offsets(doc, biluo_tags)
|
106 |
+
entities_formatted = []
|
107 |
+
for tag in entities:
|
108 |
+
entities_formatted.append({
|
109 |
+
"start": tag[0],
|
110 |
+
"end": tag[1],
|
111 |
+
"label": tag[2],
|
112 |
+
"score": 1.0
|
113 |
+
})
|
114 |
+
ner_for_display = [{
|
115 |
+
"text": doc.text,
|
116 |
+
"ents": entities_formatted,
|
117 |
+
"title": None
|
118 |
+
}]
|
119 |
+
st.title("Named Entity Results")
|
120 |
+
html_ner = displacy.render(ner_for_display, style="ent", manual=True)
|
121 |
+
html_ner = html_ner.replace("\n", " ")
|
122 |
+
st.write(HTML_WRAPPER.format(html_ner), unsafe_allow_html=True)
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == '__main__':
|
126 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
simpletransformers==0.63.7
|
3 |
+
spacy==3.2.0
|