Spaces:
Paused
Paused
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
model_name = "DiscoResearch/DiscoLM_German_7b_v1" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True, | |
#token=True, | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
def generate_answer(question): | |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") | |
#inputs = tokenizer.encode(question, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=2000, num_return_sequences=1, do_sample=True) | |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return answer | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs="text", | |
outputs="text", | |
title="The Art of Prompt Engineering", | |
description="Definiere deine Prompt, am besten auf Deutsch", | |
) | |
iface.launch(share=True) # Deploy the interface |