Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from transformers import pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Set up the device for the model
|
9 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
# Load the feature extraction pipeline
|
12 |
+
feature_extraction_pipeline = pipeline(
|
13 |
+
task="image-feature-extraction",
|
14 |
+
model="google/vit-base-patch16-384",
|
15 |
+
device=0 if torch.cuda.is_available() else -1
|
16 |
+
)
|
17 |
+
|
18 |
+
# Initialize FastAPI
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# Endpoint to extract image features
|
22 |
+
@app.post("/extract-features/")
|
23 |
+
async def extract_features(file: UploadFile = File(...)):
|
24 |
+
try:
|
25 |
+
# Validate file format
|
26 |
+
if file.content_type not in ["image/jpeg", "image/png", "image/jpg"]:
|
27 |
+
raise HTTPException(status_code=400, detail="Unsupported file format. Upload a JPEG or PNG image.")
|
28 |
+
|
29 |
+
# Read image
|
30 |
+
contents = await file.read()
|
31 |
+
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
32 |
+
|
33 |
+
# Get feature embeddings
|
34 |
+
features = feature_extraction_pipeline(image)
|
35 |
+
|
36 |
+
# Return the embedding vector
|
37 |
+
return JSONResponse(content={"features": features})
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
raise HTTPException(status_code=500, detail=str(e))
|
41 |
+
|