skanderovitch's picture
Update app.py
cabb6d5 verified
raw
history blame
8.13 kB
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import os
import re
import numpy as np
from glob import glob
import lightgbm as lgb
os.environ['S3_BUCKET'] = "seriouslytestfaces"
import io
def get_s3_url(key):
url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
return url
embeddings = pd.read_parquet('./embeddings.parquet')
def create_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def setup_user():
create_dir(f'./users/{st.session_state.name}')
create_dir(f'./users/{st.session_state.name}/likes')
create_dir(f'./users/{st.session_state.name}/models')
if 'count' not in st.session_state:
st.session_state.count = 0
st.session_state.neg = 0
st.session_state.pos = 0
import requests
def check_image_url_accessible(url):
try:
# Send a HEAD request to save bandwidth
response = requests.head(url, allow_redirects=True, timeout=5)
# If the HEAD request fails, fallback to GET request
if response.status_code != 200:
response = requests.get(url, stream=True, timeout=5)
# Check the status code
if response.status_code == 200:
# Verify if it's an image
content_type = response.headers.get("Content-Type", "")
if "image" in content_type:
return True
else:
return False
else:
return False
except requests.RequestException:
return False
def get_filename():
if 'preds' in st.session_state:
p = st.session_state.preds**4
p /= sum(p)
choice = np.random.choice(range(len(p)),p=p)
st.session_state.pred = st.session_state.preds[choice]
url = get_s3_url(embeddings.index[choice])
if check_image_url_accessible(url):
return embeddings.index[choice]
else:
return get_filename()
# st.toast('Random for now')
choice = np.random.choice(embeddings.index)
url = get_s3_url(choice)
if check_image_url_accessible(url):
return choice
else:
return get_filename()
st.title('What does attractive mean to you?')
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')
def liked(filename,like):
filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
open(filename, 'a').close()
st.session_state.count += 1
if like:
st.session_state.pos += 1
else:
st.session_state.neg += 1
def get_train_data():
clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
true_embeddings = embeddings.loc[true_files].values
false_embeddings = embeddings.loc[false_files].values
# st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
X = np.vstack([true_embeddings,false_embeddings])
return X,labels
def train_model(X,labels):
if len(labels) < 30:
st.toast('Not enough data')
return
if labels.mean() > 0.9:
st.toast('Not enough negatives')
return
if labels.mean() < 0.1:
st.toast('Not enough positives')
return
train_data = lgb.Dataset(X, label=labels)
num_round = 10
param = {'num_leaves': 30, 'objective': 'binary', 'metric' : 'binary'}
bst = lgb.train(param, train_data, num_round)
in_sample_preds = bst.predict(X)
in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
st.session_state.score = in_sample_score
st.toast(f'Score = {in_sample_score:.1%}')
return bst
def rank_candidates(bst):
return bst.predict(embeddings.values)
def train():
X,labels = get_train_data()
bst = train_model(X,labels)
if bst is None:
return
filename = f'./users/{st.session_state.name}/models/model.txt'
bst.save_model(filename)
preds = rank_candidates(bst)
st.session_state.preds = preds
st.balloons()
def cleanup():
files = glob(f'./users/{st.session_state.name}/likes/*')
for f in files:
os.remove(f)
for var in 'preds pred count pos neg'.split():
if var in st.session_state:
del st.session_state[var]
st.session_state.count = 0
st.session_state.neg = 0
st.session_state.pos = 0
def get_extremes(n=4):
if 'preds' in st.session_state:
preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
def get_strange(n=4):
if 'labels' in st.session_state:
labels = st.session_state.labels
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
data = pd.concat([labels, preds],axis=1)
# st.toast(data.columns)
data['diff'] = data['pred'] - data['label']
data = data.sort_values('diff',ascending=False)['diff']
surprising_dislikes = data.iloc[:n].to_dict()
surprising_likes = data.iloc[-n:].to_dict()
return surprising_dislikes,surprising_likes
if st.session_state.name:
st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
setup_user()
st.subheader(f"Let's start {st.session_state.name}")
c1,c2 = st.columns(2)
my_bar = c1.progress(min(st.session_state.count/40,1.))
p_liked = (st.session_state.pos / st.session_state.count) if st.session_state.count else 0
c2.metric('%age liked so far',f'{p_liked:.1%}')
filename = get_filename()
cc1, cc2 = st.columns(2)
c1,c2 = cc1.columns(2)
c1.button('Why not', on_click=liked, args=[filename,True])
c2.button('Nope', on_click=liked, args=[filename,False])
key = get_s3_url(filename)
cc1.image(key, width = 400)
c1,c2 = cc2.columns(2)
if st.session_state.count>40 and st.session_state.pos > 5 and st.session_state.neg > 5:
c1.button('Train',on_click=train,args=[])
if st.session_state.count == 41:
st.balloons()
st.toast('Ready for training')
c2.button('Start over',on_click=cleanup,args=[])
if 'preds' in st.session_state:
cc1.write('Here is our guess')
c1,c2 = cc1.columns(2)
c1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
c2.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
best,worst = get_extremes()
cc2.subheader('Predicted best')
cs = cc2.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc2.subheader('Predicted worst')
cs = cc2.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.subheader('Where you confused me')
surprising_dislikes,surprising_likes = get_strange()
cc1.write("You didn't like my picks")
cs = cc1.columns(len(surprising_dislikes))
for c,(file,pred) in zip(cs,surprising_dislikes.items()):
c.metric("", "",f'{-pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.write("You liked these more than I thought")
cs = cc1.columns(len(surprising_likes))
for c,(file,pred) in zip(cs,surprising_likes.items()):
c.metric("","", f'{-pred:.0%}')
c.image(get_s3_url(file), width = 100)