Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ def get_filename():
|
|
39 |
choice = np.random.choice(range(len(p)),p=p)
|
40 |
st.session_state.pred = st.session_state.preds[choice]
|
41 |
return embeddings.index[choice]
|
42 |
-
st.toast('Random for now')
|
43 |
return np.random.choice(embeddings.index)
|
44 |
|
45 |
st.title('What does attractive mean to you?')
|
@@ -61,7 +61,7 @@ def get_train_data():
|
|
61 |
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
|
62 |
true_embeddings = embeddings.loc[true_files].values
|
63 |
false_embeddings = embeddings.loc[false_files].values
|
64 |
-
st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
|
65 |
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
|
66 |
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
|
67 |
X = np.vstack([true_embeddings,false_embeddings])
|
@@ -125,7 +125,7 @@ def get_strange(n=4):
|
|
125 |
labels = st.session_state.labels
|
126 |
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
|
127 |
data = pd.concat([labels, preds],axis=1)
|
128 |
-
st.toast(data.columns)
|
129 |
|
130 |
data['diff'] = data['pred'] - data['label']
|
131 |
data = data.sort_values('diff',ascending=False)['diff']
|
@@ -141,6 +141,7 @@ if st.session_state.name:
|
|
141 |
setup_user()
|
142 |
|
143 |
st.subheader(f"Let's start {st.session_state.name}")
|
|
|
144 |
filename = get_filename()
|
145 |
|
146 |
|
|
|
39 |
choice = np.random.choice(range(len(p)),p=p)
|
40 |
st.session_state.pred = st.session_state.preds[choice]
|
41 |
return embeddings.index[choice]
|
42 |
+
# st.toast('Random for now')
|
43 |
return np.random.choice(embeddings.index)
|
44 |
|
45 |
st.title('What does attractive mean to you?')
|
|
|
61 |
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
|
62 |
true_embeddings = embeddings.loc[true_files].values
|
63 |
false_embeddings = embeddings.loc[false_files].values
|
64 |
+
# st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
|
65 |
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
|
66 |
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
|
67 |
X = np.vstack([true_embeddings,false_embeddings])
|
|
|
125 |
labels = st.session_state.labels
|
126 |
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
|
127 |
data = pd.concat([labels, preds],axis=1)
|
128 |
+
# st.toast(data.columns)
|
129 |
|
130 |
data['diff'] = data['pred'] - data['label']
|
131 |
data = data.sort_values('diff',ascending=False)['diff']
|
|
|
141 |
setup_user()
|
142 |
|
143 |
st.subheader(f"Let's start {st.session_state.name}")
|
144 |
+
my_bar = st.progress(min(st.session_state.count/40,1.))
|
145 |
filename = get_filename()
|
146 |
|
147 |
|