Spaces:
Sleeping
Sleeping
skanderovitch
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import streamlit.components.v1 as components
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
from glob import glob
|
8 |
+
import lightgbm as lgb
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
os.environ['S3_BUCKET'] = 'seriouslyusers'
|
12 |
+
os.environ['S3_BUCKET'] = "seriouslytestfaces"
|
13 |
+
|
14 |
+
import io
|
15 |
+
|
16 |
+
def get_s3_url(key):
|
17 |
+
url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
|
18 |
+
return url
|
19 |
+
|
20 |
+
embeddings = pd.read_parquet('./embeddings.parquet')
|
21 |
+
|
22 |
+
def create_dir(directory):
|
23 |
+
if not os.path.exists(directory):
|
24 |
+
os.makedirs(directory)
|
25 |
+
|
26 |
+
def setup_user():
|
27 |
+
create_dir(f'./users/{st.session_state.name}')
|
28 |
+
create_dir(f'./users/{st.session_state.name}/likes')
|
29 |
+
create_dir(f'./users/{st.session_state.name}/models')
|
30 |
+
|
31 |
+
def get_filename():
|
32 |
+
if 'preds' in st.session_state:
|
33 |
+
p = st.session_state.preds**4
|
34 |
+
p /= sum(p)
|
35 |
+
choice = np.random.choice(range(len(p)),p=p)
|
36 |
+
st.session_state.pred = st.session_state.preds[choice]
|
37 |
+
return embeddings.index[choice]
|
38 |
+
st.toast('Random for now')
|
39 |
+
return np.random.choice(embeddings.index)
|
40 |
+
|
41 |
+
st.title('What does attractive mean to you?')
|
42 |
+
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')
|
43 |
+
|
44 |
+
|
45 |
+
def liked(filename,like):
|
46 |
+
filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
|
47 |
+
open(filename, 'a').close()
|
48 |
+
|
49 |
+
def get_train_data():
|
50 |
+
clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
|
51 |
+
true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
|
52 |
+
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
|
53 |
+
true_embeddings = embeddings.loc[true_files].values
|
54 |
+
false_embeddings = embeddings.loc[false_files].values
|
55 |
+
st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
|
56 |
+
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
|
57 |
+
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
|
58 |
+
X = np.vstack([true_embeddings,false_embeddings])
|
59 |
+
return X,labels
|
60 |
+
|
61 |
+
def train_model(X,labels):
|
62 |
+
if len(labels) < 30:
|
63 |
+
st.toast('Not enough data')
|
64 |
+
return
|
65 |
+
if labels.mean() > 0.9:
|
66 |
+
st.toast('Not enough negatives')
|
67 |
+
return
|
68 |
+
if labels.mean() < 0.1:
|
69 |
+
st.toast('Not enough positives')
|
70 |
+
return
|
71 |
+
train_data = lgb.Dataset(X, label=labels)
|
72 |
+
num_round = 10
|
73 |
+
param = {'num_leaves':10, 'objective': 'binary', 'metric' : 'auc'}
|
74 |
+
bst = lgb.train(param, train_data, num_round)
|
75 |
+
in_sample_preds = bst.predict(X)
|
76 |
+
in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
|
77 |
+
st.session_state.score = in_sample_score
|
78 |
+
st.toast(f'Score = {in_sample_score:.1%}')
|
79 |
+
return bst
|
80 |
+
|
81 |
+
def rank_candidates(bst):
|
82 |
+
return bst.predict(embeddings.values)
|
83 |
+
|
84 |
+
|
85 |
+
def train():
|
86 |
+
X,labels = get_train_data()
|
87 |
+
bst = train_model(X,labels)
|
88 |
+
if bst is None:
|
89 |
+
return
|
90 |
+
filename = f'./users/{st.session_state.name}/models/model.txt'
|
91 |
+
bst.save_model(filename)
|
92 |
+
preds = rank_candidates(bst)
|
93 |
+
st.session_state.preds = preds
|
94 |
+
|
95 |
+
|
96 |
+
def cleanup():
|
97 |
+
files = glob(f'./users/{st.session_state.name}/likes/*')
|
98 |
+
for f in files:
|
99 |
+
os.remove(f)
|
100 |
+
if 'preds' in st.session_state:
|
101 |
+
del st.session_state.preds
|
102 |
+
del st.session_state.pred
|
103 |
+
|
104 |
+
|
105 |
+
def get_extremes(n=4):
|
106 |
+
if 'preds' in st.session_state:
|
107 |
+
preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
|
108 |
+
return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
|
109 |
+
|
110 |
+
def get_strange(n=4):
|
111 |
+
if 'labels' in st.session_state:
|
112 |
+
labels = st.session_state.labels
|
113 |
+
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
|
114 |
+
data = pd.concat([labels, preds],axis=1)
|
115 |
+
st.toast(data.columns)
|
116 |
+
|
117 |
+
data['diff'] = data['pred'] - data['label']
|
118 |
+
data = data.sort_values('diff')['diff']
|
119 |
+
return data.iloc[:n].to_dict(),data.iloc[-n:].to_dict()
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
if st.session_state.name:
|
125 |
+
st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
|
126 |
+
setup_user()
|
127 |
+
st.subheader(f"Let's start {st.session_state.name}")
|
128 |
+
filename = get_filename()
|
129 |
+
|
130 |
+
|
131 |
+
cc1, cc2 = st.columns(2)
|
132 |
+
c1,c2 = cc1.columns(2)
|
133 |
+
c1.button('Why not', on_click=liked, args=[filename,True])
|
134 |
+
c2.button('Nope', on_click=liked, args=[filename,False])
|
135 |
+
key = get_s3_url(filename)
|
136 |
+
cc1.image(key, width = 400)
|
137 |
+
c1,c2 = cc2.columns(2)
|
138 |
+
c1.button('Train',on_click=train,args=[])
|
139 |
+
c2.button('Start over',on_click=cleanup,args=[])
|
140 |
+
if 'preds' in st.session_state:
|
141 |
+
|
142 |
+
cc1.write('Here is our guess')
|
143 |
+
cc1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
|
144 |
+
|
145 |
+
best,worst = get_extremes()
|
146 |
+
|
147 |
+
cc2.subheader('Predicted best')
|
148 |
+
cs = cc2.columns(len(best))
|
149 |
+
for c,(file,pred) in zip(cs,best.items()):
|
150 |
+
c.metric("", f'{pred:.0%}')
|
151 |
+
c.image(get_s3_url(file), width = 100)
|
152 |
+
|
153 |
+
cc2.subheader('Predicted worst')
|
154 |
+
cs = cc2.columns(len(worst))
|
155 |
+
for c,(file,pred) in zip(cs,worst.items()):
|
156 |
+
c.metric("", f'{pred:.0%}')
|
157 |
+
c.image(get_s3_url(file), width = 100)
|
158 |
+
|
159 |
+
cc1.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
|
160 |
+
|
161 |
+
cc1.subheader('Where you confused me')
|
162 |
+
|
163 |
+
best,worst = get_strange()
|
164 |
+
|
165 |
+
cc1.write("You didn't like my picks")
|
166 |
+
cs = cc1.columns(len(best))
|
167 |
+
for c,(file,pred) in zip(cs,best.items()):
|
168 |
+
c.metric("", "",f'{pred:.0%}')
|
169 |
+
c.image(get_s3_url(file), width = 100)
|
170 |
+
|
171 |
+
cc1.write("You liked these more than I thought")
|
172 |
+
cs = cc1.columns(len(worst))
|
173 |
+
for c,(file,pred) in zip(cs,worst.items()):
|
174 |
+
c.metric("","", f'{pred:.0%}')
|
175 |
+
c.image(get_s3_url(file), width = 100)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|