skanderovitch commited on
Commit
f6230c6
·
verified ·
1 Parent(s): 984066b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -115,7 +115,7 @@ def train_model(X,labels):
115
  return
116
  train_data = lgb.Dataset(X, label=labels)
117
  num_round = 10
118
- param = {'num_leaves':30, 'objective': 'binary', 'metric' : 'auc', 'lambda_l2': 1.}
119
  bst = lgb.train(param, train_data, num_round)
120
  in_sample_preds = bst.predict(X)
121
  in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
@@ -177,7 +177,12 @@ if st.session_state.name:
177
  setup_user()
178
 
179
  st.subheader(f"Let's start {st.session_state.name}")
180
- my_bar = st.progress(min(st.session_state.count/40,1.))
 
 
 
 
 
181
  filename = get_filename()
182
 
183
 
@@ -190,12 +195,17 @@ if st.session_state.name:
190
  c1,c2 = cc2.columns(2)
191
  if st.session_state.count>30 and st.session_state.pos > 5 and st.session_state.neg > 5:
192
  c1.button('Train',on_click=train,args=[])
 
 
 
193
  c2.button('Start over',on_click=cleanup,args=[])
194
  if 'preds' in st.session_state:
195
 
196
  cc1.write('Here is our guess')
197
- cc1.metric("Probability you will like the person above", f'{st.session_state.pred:.1%}')
198
-
 
 
199
  best,worst = get_extremes()
200
 
201
  cc2.subheader('Predicted best')
@@ -210,7 +220,7 @@ if st.session_state.name:
210
  c.metric("", f'{pred:.0%}')
211
  c.image(get_s3_url(file), width = 100)
212
 
213
- cc1.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
214
 
215
  cc1.subheader('Where you confused me')
216
 
 
115
  return
116
  train_data = lgb.Dataset(X, label=labels)
117
  num_round = 10
118
+ param = {'num_leaves':50, 'objective': 'binary', 'metric' : 'auc', 'lambda_l2': 0.1, 'max_depth':5}
119
  bst = lgb.train(param, train_data, num_round)
120
  in_sample_preds = bst.predict(X)
121
  in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
 
177
  setup_user()
178
 
179
  st.subheader(f"Let's start {st.session_state.name}")
180
+ c1,c2 = st.columns(2)
181
+ my_bar = c1.progress(min(st.session_state.count/40,1.))
182
+ p_liked = (st.session_state.pos / st.session_state.count) if st.session_state.count else 0
183
+ c2.metric('%age liked so far',f'{p_liked:.1%}')
184
+
185
+
186
  filename = get_filename()
187
 
188
 
 
195
  c1,c2 = cc2.columns(2)
196
  if st.session_state.count>30 and st.session_state.pos > 5 and st.session_state.neg > 5:
197
  c1.button('Train',on_click=train,args=[])
198
+ if st.session_state.count == 31:
199
+ st.balloons()
200
+ st.toast('Ready for training')
201
  c2.button('Start over',on_click=cleanup,args=[])
202
  if 'preds' in st.session_state:
203
 
204
  cc1.write('Here is our guess')
205
+ c1,c2 = cc1.columns(2)
206
+ c1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
207
+ c2.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
208
+
209
  best,worst = get_extremes()
210
 
211
  cc2.subheader('Predicted best')
 
220
  c.metric("", f'{pred:.0%}')
221
  c.image(get_s3_url(file), width = 100)
222
 
223
+
224
 
225
  cc1.subheader('Where you confused me')
226