Spaces:
Runtime error
Runtime error
Initial commit
Browse files- .gitignore +136 -0
- README.md +3 -12
- app.py +54 -0
- cartpole.py +635 -0
- requirements.txt +438 -0
.gitignore
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
generate/
|
2 |
+
videos/
|
3 |
+
token.txt
|
4 |
+
pat.txt
|
5 |
+
*.ipynb
|
6 |
+
runs/
|
7 |
+
wandb/
|
8 |
+
# Byte-compiled / optimized / DLL files
|
9 |
+
__pycache__/
|
10 |
+
*.py[cod]
|
11 |
+
*$py.class
|
12 |
+
|
13 |
+
# C extensions
|
14 |
+
*.so
|
15 |
+
|
16 |
+
# Distribution / packaging
|
17 |
+
.Python
|
18 |
+
build/
|
19 |
+
develop-eggs/
|
20 |
+
dist/
|
21 |
+
downloads/
|
22 |
+
eggs/
|
23 |
+
.eggs/
|
24 |
+
lib/
|
25 |
+
lib64/
|
26 |
+
parts/
|
27 |
+
sdist/
|
28 |
+
var/
|
29 |
+
wheels/
|
30 |
+
pip-wheel-metadata/
|
31 |
+
share/python-wheels/
|
32 |
+
*.egg-info/
|
33 |
+
.installed.cfg
|
34 |
+
*.egg
|
35 |
+
MANIFEST
|
36 |
+
|
37 |
+
# PyInstaller
|
38 |
+
# Usually these files are written by a python script from a template
|
39 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
40 |
+
*.manifest
|
41 |
+
*.spec
|
42 |
+
|
43 |
+
# Installer logs
|
44 |
+
pip-log.txt
|
45 |
+
pip-delete-this-directory.txt
|
46 |
+
|
47 |
+
# Unit test / coverage reports
|
48 |
+
htmlcov/
|
49 |
+
.tox/
|
50 |
+
.nox/
|
51 |
+
.coverage
|
52 |
+
.coverage.*
|
53 |
+
.cache
|
54 |
+
nosetests.xml
|
55 |
+
coverage.xml
|
56 |
+
*.cover
|
57 |
+
*.py,cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
|
61 |
+
# Translations
|
62 |
+
*.mo
|
63 |
+
*.pot
|
64 |
+
|
65 |
+
# Django stuff:
|
66 |
+
*.log
|
67 |
+
local_settings.py
|
68 |
+
db.sqlite3
|
69 |
+
db.sqlite3-journal
|
70 |
+
|
71 |
+
# Flask stuff:
|
72 |
+
instance/
|
73 |
+
.webassets-cache
|
74 |
+
|
75 |
+
# Scrapy stuff:
|
76 |
+
.scrapy
|
77 |
+
|
78 |
+
# Sphinx documentation
|
79 |
+
docs/_build/
|
80 |
+
|
81 |
+
# PyBuilder
|
82 |
+
target/
|
83 |
+
|
84 |
+
# Jupyter Notebook
|
85 |
+
.ipynb_checkpoints
|
86 |
+
|
87 |
+
# IPython
|
88 |
+
profile_default/
|
89 |
+
ipython_config.py
|
90 |
+
|
91 |
+
# pyenv
|
92 |
+
.python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
102 |
+
__pypackages__/
|
103 |
+
|
104 |
+
# Celery stuff
|
105 |
+
celerybeat-schedule
|
106 |
+
celerybeat.pid
|
107 |
+
|
108 |
+
# SageMath parsed files
|
109 |
+
*.sage.py
|
110 |
+
|
111 |
+
# Environments
|
112 |
+
.env
|
113 |
+
.venv
|
114 |
+
env/
|
115 |
+
venv/
|
116 |
+
ENV/
|
117 |
+
env.bak/
|
118 |
+
venv.bak/
|
119 |
+
|
120 |
+
# Spyder project settings
|
121 |
+
.spyderproject
|
122 |
+
.spyproject
|
123 |
+
|
124 |
+
# Rope project settings
|
125 |
+
.ropeproject
|
126 |
+
|
127 |
+
# mkdocs documentation
|
128 |
+
/site
|
129 |
+
|
130 |
+
# mypy
|
131 |
+
.mypy_cache/
|
132 |
+
.dmypy.json
|
133 |
+
dmypy.json
|
134 |
+
|
135 |
+
# Pyre type checker
|
136 |
+
.pyre/
|
README.md
CHANGED
@@ -1,13 +1,4 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
emoji: 🔥
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.19.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: wtfpl
|
11 |
-
---
|
12 |
|
13 |
-
|
|
|
1 |
+
# cartpole-demo
|
2 |
+
This project is intended to publish my solution to the Cartpole environment from OpenAI's Gym.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
I want to deploy to HuggingFace
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import gradio as gr
|
3 |
+
import gym
|
4 |
+
import sys
|
5 |
+
from torch.utils.tensorboard import SummaryWriter
|
6 |
+
import yaml
|
7 |
+
import torch
|
8 |
+
from cartpole import (
|
9 |
+
make_env, reset_env, Agent, rollout_phase, get_action_shape
|
10 |
+
)
|
11 |
+
|
12 |
+
MAIN = __name__ == "__main__"
|
13 |
+
examples = [0, 1, 31415, 'Hello, World!', 'This is a seed...']
|
14 |
+
|
15 |
+
def generate_video(
|
16 |
+
string: str, wandb_path='wandb/run-20230303_211416-ox4d1p0u/files'
|
17 |
+
):
|
18 |
+
with open(f'{wandb_path}/config.yaml') as f_cfg:
|
19 |
+
config = yaml.safe_load(f_cfg)
|
20 |
+
seed = hash(string) % ((sys.maxsize + 1) * 2)
|
21 |
+
num_envs = config['num_envs']['value']
|
22 |
+
num_steps = config['num_steps']['value']
|
23 |
+
assert seed >= 0
|
24 |
+
assert isinstance(seed, int)
|
25 |
+
run_name = f'seed{seed}'
|
26 |
+
log_dir = f'generate/{run_name}'
|
27 |
+
writer = SummaryWriter(log_dir)
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
envs = gym.vector.SyncVectorEnv([
|
30 |
+
make_env("CartPole-v1", seed, i, True, run_name)
|
31 |
+
for i in range(num_envs)
|
32 |
+
])
|
33 |
+
action_shape = get_action_shape(envs)
|
34 |
+
next_obs, next_done = reset_env(envs, device)
|
35 |
+
global_step = 0
|
36 |
+
agent = Agent(envs).to(device)
|
37 |
+
agent.load_state_dict(torch.load(f'{wandb_path}/model_state_dict.pt'))
|
38 |
+
rollout_phase(
|
39 |
+
next_obs, next_done, agent, envs, writer, device,
|
40 |
+
global_step, action_shape, num_envs, num_steps,
|
41 |
+
)
|
42 |
+
video_path = glob.glob(f'videos/{run_name}/*.mp4')[0]
|
43 |
+
return video_path
|
44 |
+
|
45 |
+
if MAIN:
|
46 |
+
demo = gr.Interface(
|
47 |
+
fn=generate_video,
|
48 |
+
inputs=[
|
49 |
+
gr.components.Textbox(lines=1, label="Seed"),
|
50 |
+
],
|
51 |
+
outputs=gr.components.Video(label="Generated Video"),
|
52 |
+
examples=examples,
|
53 |
+
)
|
54 |
+
demo.launch(share=True)
|
cartpole.py
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---
|
2 |
+
# jupyter:
|
3 |
+
# jupytext:
|
4 |
+
# text_representation:
|
5 |
+
# extension: .py
|
6 |
+
# format_name: light
|
7 |
+
# format_version: '1.5'
|
8 |
+
# jupytext_version: 1.14.5
|
9 |
+
# kernelspec:
|
10 |
+
# display_name: Python 3
|
11 |
+
# name: python3
|
12 |
+
# ---
|
13 |
+
|
14 |
+
# + id="QAY_RQOLcRtA" executionInfo={"status": "ok", "timestamp": 1677942285188, "user_tz": 0, "elapsed": 1942, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="ee4de327-947e-4f4e-9d34-514460da288a"
|
15 |
+
MAIN = __name__ == "__main__"
|
16 |
+
if MAIN:
|
17 |
+
print('Mounting drive...')
|
18 |
+
from google.colab import drive
|
19 |
+
drive.mount('/content/drive')
|
20 |
+
# %cd /content/drive/MyDrive/Colab Notebooks/cartpole-demo
|
21 |
+
|
22 |
+
# + colab={"base_uri": "https://localhost:8080/"} id="GgSNZRJh4EjV" executionInfo={"status": "ok", "timestamp": 1677942324397, "user_tz": 0, "elapsed": 39212, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="8fd1eecc-12d1-4bae-cd15-dd541f1d84c7"
|
23 |
+
# !pip install einops
|
24 |
+
# !pip install wandb
|
25 |
+
# !pip install jupytext
|
26 |
+
# !pip install pygame
|
27 |
+
# !pip install torchtyping
|
28 |
+
# !pip install gradio
|
29 |
+
|
30 |
+
# + colab={"base_uri": "https://localhost:8080/"} id="1g58HZUb8Ltl" executionInfo={"status": "ok", "timestamp": 1677942492332, "user_tz": 0, "elapsed": 2440, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="d2f2ab57-c2c0-49aa-fdef-323556a2e4b6"
|
31 |
+
# !git config --global user.email "[email protected]"
|
32 |
+
# !git config --global user.name "ojh31"
|
33 |
+
# !cat pat.txt | xargs git remote set-url origin
|
34 |
+
# !jupytext --to py cartpole.ipynb
|
35 |
+
# !git fetch
|
36 |
+
# !git status
|
37 |
+
|
38 |
+
# + id="vEczQ48wC40O" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 4062, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
39 |
+
import os
|
40 |
+
import glob
|
41 |
+
import sys
|
42 |
+
import argparse
|
43 |
+
import random
|
44 |
+
import time
|
45 |
+
from distutils.util import strtobool
|
46 |
+
from dataclasses import dataclass
|
47 |
+
from typing import Optional
|
48 |
+
import numpy as np
|
49 |
+
import torch
|
50 |
+
import torch as t
|
51 |
+
from torchtyping import TensorType as TT
|
52 |
+
from typeguard import typechecked
|
53 |
+
import gym
|
54 |
+
import torch.nn as nn
|
55 |
+
import torch.optim as optim
|
56 |
+
from torch.distributions.categorical import Categorical
|
57 |
+
from torch.utils.tensorboard import SummaryWriter
|
58 |
+
from gym.spaces import Discrete
|
59 |
+
from typing import Any, List, Optional, Union, Tuple, Iterable
|
60 |
+
from einops import rearrange
|
61 |
+
import importlib
|
62 |
+
import wandb
|
63 |
+
from typeguard import typechecked
|
64 |
+
|
65 |
+
|
66 |
+
# + id="K7T8bs1Y76ZK" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="f59ffef0-7156-4f27-d992-a392d59a1c73"
|
67 |
+
# %env "WANDB_NOTEBOOK_NAME" "cartpole.py"
|
68 |
+
|
69 |
+
# + id="Q5E93-BGRjuy" executionInfo={"status": "ok", "timestamp": 1677942330522, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
70 |
+
def make_env(
|
71 |
+
env_id: str, seed: int, idx: int, capture_video: bool, run_name: str
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
Return a function that returns an environment after setting up boilerplate.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def thunk():
|
78 |
+
env = gym.make(env_id, new_step_api=True)
|
79 |
+
env = gym.wrappers.RecordEpisodeStatistics(env)
|
80 |
+
if capture_video:
|
81 |
+
if idx == 0:
|
82 |
+
# Video every 50 runs for env #1
|
83 |
+
env = gym.wrappers.RecordVideo(
|
84 |
+
env,
|
85 |
+
f"videos/{run_name}",
|
86 |
+
episode_trigger=lambda x : x % 50 == 0
|
87 |
+
)
|
88 |
+
obs = env.reset(seed=seed)
|
89 |
+
env.action_space.seed(seed)
|
90 |
+
env.observation_space.seed(seed)
|
91 |
+
return env
|
92 |
+
|
93 |
+
return thunk
|
94 |
+
|
95 |
+
|
96 |
+
# + id="Kf152ROwHjM_" executionInfo={"status": "ok", "timestamp": 1677942330522, "user_tz": 0, "elapsed": 7, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
97 |
+
def test_minibatch_indexes(minibatch_indexes):
|
98 |
+
for n in range(5):
|
99 |
+
frac, minibatch_size = np.random.randint(1, 8, size=(2,))
|
100 |
+
batch_size = frac * minibatch_size
|
101 |
+
indices = minibatch_indexes(batch_size, minibatch_size)
|
102 |
+
assert any([isinstance(indices, list), isinstance(indices, np.ndarray)])
|
103 |
+
assert isinstance(indices[0], np.ndarray)
|
104 |
+
assert len(indices) == frac
|
105 |
+
np.testing.assert_equal(np.sort(np.stack(indices).flatten()), np.arange(batch_size))
|
106 |
+
|
107 |
+
|
108 |
+
# + id="mhvduVeOHkln" executionInfo={"status": "ok", "timestamp": 1677942330522, "user_tz": 0, "elapsed": 7, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
109 |
+
def test_calc_entropy_bonus(calc_entropy_bonus):
|
110 |
+
probs = Categorical(logits=t.randn((3, 4)))
|
111 |
+
ent_coef = 0.5
|
112 |
+
expected = ent_coef * probs.entropy().mean()
|
113 |
+
actual = calc_entropy_bonus(probs, ent_coef)
|
114 |
+
t.testing.assert_close(expected, actual)
|
115 |
+
|
116 |
+
|
117 |
+
# + id="Aya60GeCGA5X" executionInfo={"status": "ok", "timestamp": 1677942330875, "user_tz": 0, "elapsed": 360, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
118 |
+
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
119 |
+
t.nn.init.orthogonal_(layer.weight, std)
|
120 |
+
t.nn.init.constant_(layer.bias, bias_const)
|
121 |
+
return layer
|
122 |
+
|
123 |
+
class Agent(nn.Module):
|
124 |
+
critic: nn.Sequential
|
125 |
+
actor: nn.Sequential
|
126 |
+
|
127 |
+
def __init__(self, envs: gym.vector.SyncVectorEnv):
|
128 |
+
super().__init__()
|
129 |
+
obs_shape = np.array(
|
130 |
+
(envs.num_envs, ) + envs.single_action_space.shape
|
131 |
+
).prod().astype(int)
|
132 |
+
self.actor = nn.Sequential(
|
133 |
+
layer_init(nn.Linear(obs_shape, 64)),
|
134 |
+
nn.Tanh(),
|
135 |
+
layer_init(nn.Linear(64, 64)),
|
136 |
+
nn.Tanh(),
|
137 |
+
layer_init(nn.Linear(64, envs.single_action_space.n), std=.01),
|
138 |
+
)
|
139 |
+
self.critic = nn.Sequential(
|
140 |
+
layer_init(nn.Linear(obs_shape, 64)),
|
141 |
+
nn.Tanh(),
|
142 |
+
layer_init(nn.Linear(64, 64)),
|
143 |
+
nn.Tanh(),
|
144 |
+
layer_init(nn.Linear(64, 1), std=1),
|
145 |
+
)
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
# + id="6PwPZHlLGDYu" executionInfo={"status": "ok", "timestamp": 1677942330875, "user_tz": 0, "elapsed": 4, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
150 |
+
# %%
|
151 |
+
@t.inference_mode()
|
152 |
+
def compute_advantages(
|
153 |
+
next_value: t.Tensor,
|
154 |
+
next_done: t.Tensor,
|
155 |
+
rewards: t.Tensor,
|
156 |
+
values: t.Tensor,
|
157 |
+
dones: t.Tensor,
|
158 |
+
device: t.device,
|
159 |
+
gamma: float,
|
160 |
+
gae_lambda: float,
|
161 |
+
) -> t.Tensor:
|
162 |
+
'''Compute advantages using Generalized Advantage Estimation.
|
163 |
+
|
164 |
+
next_value: shape (1, env) -
|
165 |
+
represents V(s_{t+1}) which is needed for the last advantage term
|
166 |
+
next_done: shape (env,)
|
167 |
+
rewards: shape (t, env)
|
168 |
+
values: shape (t, env)
|
169 |
+
dones: shape (t, env)
|
170 |
+
|
171 |
+
Return: shape (t, env)
|
172 |
+
'''
|
173 |
+
assert isinstance(next_value, t.Tensor)
|
174 |
+
assert isinstance(next_done, t.Tensor)
|
175 |
+
assert isinstance(rewards, t.Tensor)
|
176 |
+
assert isinstance(values, t.Tensor)
|
177 |
+
assert isinstance(dones, t.Tensor)
|
178 |
+
t_max, n_env = values.shape
|
179 |
+
next_values = t.concat((values[1:, ], next_value))
|
180 |
+
next_dones = t.concat((dones[1:, ], next_done.unsqueeze(0)))
|
181 |
+
deltas = rewards + gamma * next_values * (1.0 - next_dones) - values
|
182 |
+
adv = deltas.clone().to(device)
|
183 |
+
for to_go in range(1, t_max):
|
184 |
+
t_idx = t_max - to_go - 1
|
185 |
+
t.testing.assert_close(adv[t_idx], deltas[t_idx])
|
186 |
+
adv[t_idx] += (
|
187 |
+
gamma * gae_lambda * adv[t_idx + 1] * (1.0 - next_dones[t_idx])
|
188 |
+
)
|
189 |
+
return adv
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
# + id="uYSSMnF-GPvm" executionInfo={"status": "ok", "timestamp": 1677942330875, "user_tz": 0, "elapsed": 3, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
194 |
+
# %%
|
195 |
+
@dataclass
|
196 |
+
class Minibatch:
|
197 |
+
obs: t.Tensor
|
198 |
+
logprobs: t.Tensor
|
199 |
+
actions: t.Tensor
|
200 |
+
advantages: t.Tensor
|
201 |
+
returns: t.Tensor
|
202 |
+
values: t.Tensor
|
203 |
+
|
204 |
+
def minibatch_indexes(
|
205 |
+
batch_size: int, minibatch_size: int
|
206 |
+
) -> List[np.ndarray]:
|
207 |
+
'''
|
208 |
+
Return a list of length (batch_size // minibatch_size) where
|
209 |
+
each element is an array of indexes into the batch.
|
210 |
+
|
211 |
+
Each index should appear exactly once.
|
212 |
+
'''
|
213 |
+
assert batch_size % minibatch_size == 0
|
214 |
+
n = batch_size // minibatch_size
|
215 |
+
indices = np.arange(batch_size)
|
216 |
+
np.random.shuffle(indices)
|
217 |
+
return [indices[i::n] for i in range(n)]
|
218 |
+
|
219 |
+
if MAIN:
|
220 |
+
test_minibatch_indexes(minibatch_indexes)
|
221 |
+
|
222 |
+
def make_minibatches(
|
223 |
+
obs: t.Tensor,
|
224 |
+
logprobs: t.Tensor,
|
225 |
+
actions: t.Tensor,
|
226 |
+
advantages: t.Tensor,
|
227 |
+
values: t.Tensor,
|
228 |
+
obs_shape: tuple,
|
229 |
+
action_shape: tuple,
|
230 |
+
batch_size: int,
|
231 |
+
minibatch_size: int,
|
232 |
+
) -> List[Minibatch]:
|
233 |
+
'''
|
234 |
+
Flatten the environment and steps dimension into one batch dimension,
|
235 |
+
then shuffle and split into minibatches.
|
236 |
+
'''
|
237 |
+
n_steps, n_env = values.shape
|
238 |
+
n_dim = n_steps * n_env
|
239 |
+
indexes = minibatch_indexes(batch_size=batch_size, minibatch_size=minibatch_size)
|
240 |
+
obs_flat = obs.reshape((batch_size,) + obs_shape)
|
241 |
+
act_flat = actions.reshape((batch_size,) + action_shape)
|
242 |
+
probs_flat = logprobs.reshape((batch_size,) + action_shape)
|
243 |
+
adv_flat = advantages.reshape(n_dim)
|
244 |
+
val_flat = values.reshape(n_dim)
|
245 |
+
return [
|
246 |
+
Minibatch(
|
247 |
+
obs_flat[idx], probs_flat[idx], act_flat[idx], adv_flat[idx],
|
248 |
+
adv_flat[idx] + val_flat[idx], val_flat[idx]
|
249 |
+
)
|
250 |
+
for idx in indexes
|
251 |
+
]
|
252 |
+
|
253 |
+
|
254 |
+
|
255 |
+
# + id="K7wXDJ9MGOWu" executionInfo={"status": "ok", "timestamp": 1677942330876, "user_tz": 0, "elapsed": 4, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
256 |
+
# %%
|
257 |
+
def calc_policy_loss(
|
258 |
+
probs: Categorical, mb_action: t.Tensor, mb_advantages: t.Tensor,
|
259 |
+
mb_logprobs: t.Tensor, clip_coef: float
|
260 |
+
) -> t.Tensor:
|
261 |
+
'''
|
262 |
+
Return the policy loss, suitable for maximisation with gradient ascent.
|
263 |
+
|
264 |
+
probs:
|
265 |
+
a distribution containing the actor's unnormalized logits of
|
266 |
+
shape (minibatch, num_actions)
|
267 |
+
|
268 |
+
clip_coef: amount of clipping, denoted by epsilon in Eq 7.
|
269 |
+
|
270 |
+
normalize: if true, normalize mb_advantages to have mean 0, variance 1
|
271 |
+
'''
|
272 |
+
adv_norm = (mb_advantages - mb_advantages.mean()) / mb_advantages.std()
|
273 |
+
ratio = t.exp(probs.log_prob(mb_action)) / t.exp(mb_logprobs)
|
274 |
+
min_left = ratio * adv_norm
|
275 |
+
min_right = t.clip(ratio, 1 - clip_coef, 1 + clip_coef) * adv_norm
|
276 |
+
return t.minimum(min_left, min_right).mean()
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
# + id="CmyxU6JWGMsG" executionInfo={"status": "ok", "timestamp": 1677942330876, "user_tz": 0, "elapsed": 4, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
281 |
+
# %%
|
282 |
+
def calc_value_function_loss(
|
283 |
+
critic: nn.Sequential, mb_obs: t.Tensor, mb_returns: t.Tensor, v_coef: float
|
284 |
+
) -> t.Tensor:
|
285 |
+
'''Compute the value function portion of the loss function.
|
286 |
+
Need to minimise this
|
287 |
+
|
288 |
+
v_coef:
|
289 |
+
the coefficient for the value loss, which weights its contribution to
|
290 |
+
the overall loss. Denoted by c_1 in the paper.
|
291 |
+
'''
|
292 |
+
output = critic(mb_obs)
|
293 |
+
return v_coef * (output - mb_returns).pow(2).mean() / 2
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
# + id="npyWs6xjGLkP" executionInfo={"status": "ok", "timestamp": 1677942331469, "user_tz": 0, "elapsed": 597, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
298 |
+
# %%
|
299 |
+
def calc_entropy_loss(probs: Categorical, ent_coef: float):
|
300 |
+
'''Return the entropy loss term.
|
301 |
+
Need to maximise this
|
302 |
+
|
303 |
+
ent_coef:
|
304 |
+
The coefficient for the entropy loss, which weights its contribution to the overall loss.
|
305 |
+
Denoted by c_2 in the paper.
|
306 |
+
'''
|
307 |
+
return probs.entropy().mean() * ent_coef
|
308 |
+
|
309 |
+
if MAIN:
|
310 |
+
test_calc_entropy_bonus(calc_entropy_loss)
|
311 |
+
|
312 |
+
|
313 |
+
# + id="nqJeg1kZGKSG" executionInfo={"status": "ok", "timestamp": 1677942331470, "user_tz": 0, "elapsed": 5, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
314 |
+
# %%
|
315 |
+
class PPOScheduler:
|
316 |
+
def __init__(self, optimizer: optim.Adam, initial_lr: float, end_lr: float, num_updates: int):
|
317 |
+
self.optimizer = optimizer
|
318 |
+
self.initial_lr = initial_lr
|
319 |
+
self.end_lr = end_lr
|
320 |
+
self.num_updates = num_updates
|
321 |
+
self.n_step_calls = 0
|
322 |
+
|
323 |
+
def step(self):
|
324 |
+
'''
|
325 |
+
Implement linear learning rate decay so that after num_updates calls to step,
|
326 |
+
the learning rate is end_lr.
|
327 |
+
'''
|
328 |
+
lr = (
|
329 |
+
self.initial_lr +
|
330 |
+
(self.end_lr - self.initial_lr) * self.n_step_calls / self.num_updates
|
331 |
+
)
|
332 |
+
for param in self.optimizer.param_groups:
|
333 |
+
param['lr'] = lr
|
334 |
+
self.n_step_calls += 1
|
335 |
+
|
336 |
+
def make_optimizer(
|
337 |
+
agent: Agent, num_updates: int, initial_lr: float, end_lr: float
|
338 |
+
) -> Tuple[optim.Adam, PPOScheduler]:
|
339 |
+
'''Return an appropriately configured Adam with its attached scheduler.'''
|
340 |
+
optimizer = optim.Adam(agent.parameters(), lr=initial_lr, maximize=True)
|
341 |
+
scheduler = PPOScheduler(
|
342 |
+
optimizer=optimizer, initial_lr=initial_lr, end_lr=end_lr, num_updates=num_updates
|
343 |
+
)
|
344 |
+
return optimizer, scheduler
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
# + id="mgZ7-wsRCxJW" executionInfo={"status": "ok", "timestamp": 1677942331470, "user_tz": 0, "elapsed": 5, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
349 |
+
@dataclass
|
350 |
+
class PPOArgs:
|
351 |
+
exp_name: str = 'cartpole.py'
|
352 |
+
seed: int = 1
|
353 |
+
torch_deterministic: bool = True
|
354 |
+
cuda: bool = True
|
355 |
+
track: bool = True
|
356 |
+
wandb_project_name: str = "PPOCart"
|
357 |
+
wandb_entity: str = None
|
358 |
+
capture_video: bool = True
|
359 |
+
env_id: str = "CartPole-v1"
|
360 |
+
total_timesteps: int = 40_000
|
361 |
+
learning_rate: float = 0.00025
|
362 |
+
num_envs: int = 4
|
363 |
+
num_steps: int = 128
|
364 |
+
gamma: float = 0.99
|
365 |
+
gae_lambda: float = 0.95
|
366 |
+
num_minibatches: int = 4
|
367 |
+
update_epochs: int = 4
|
368 |
+
clip_coef: float = 0.2
|
369 |
+
ent_coef: float = 0.01
|
370 |
+
vf_coef: float = 0.5
|
371 |
+
max_grad_norm: float = 0.5
|
372 |
+
batch_size: int = 512
|
373 |
+
minibatch_size: int = 128
|
374 |
+
|
375 |
+
|
376 |
+
# + id="xeIu-J3ZwGyq" executionInfo={"status": "ok", "timestamp": 1677942356492, "user_tz": 0, "elapsed": 218, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
377 |
+
def wandb_init(name: str, args: PPOArgs):
|
378 |
+
wandb.init(
|
379 |
+
project=args.wandb_project_name,
|
380 |
+
entity=args.wandb_entity,
|
381 |
+
sync_tensorboard=True,
|
382 |
+
config=vars(args),
|
383 |
+
name=name,
|
384 |
+
monitor_gym=True,
|
385 |
+
save_code=True,
|
386 |
+
settings=wandb.Settings(symlink=False)
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
# + id="gMYWqhsryYHy" executionInfo={"status": "ok", "timestamp": 1677942331470, "user_tz": 0, "elapsed": 4, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
391 |
+
def set_seed(seed: int):
|
392 |
+
random.seed(seed)
|
393 |
+
np.random.seed(seed)
|
394 |
+
torch.manual_seed(seed)
|
395 |
+
|
396 |
+
|
397 |
+
# + id="T9j_L0Wpyrgz" executionInfo={"status": "ok", "timestamp": 1677942331471, "user_tz": 0, "elapsed": 5, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
398 |
+
@typechecked
|
399 |
+
def rollout_phase(
|
400 |
+
next_obs: t.Tensor, next_done: t.Tensor,
|
401 |
+
agent: Agent, envs: gym.vector.SyncVectorEnv,
|
402 |
+
writer: SummaryWriter, device: torch.device,
|
403 |
+
global_step: int, action_shape: Tuple,
|
404 |
+
num_envs: int, num_steps: int,
|
405 |
+
) -> Tuple[
|
406 |
+
TT['envs'],
|
407 |
+
TT['envs'],
|
408 |
+
TT['steps', 'envs'],
|
409 |
+
TT['steps', 'envs'],
|
410 |
+
TT['steps', 'envs'],
|
411 |
+
TT['steps', 'envs'],
|
412 |
+
TT['steps', 'envs'],
|
413 |
+
TT['steps', 'envs'],
|
414 |
+
]:
|
415 |
+
'''
|
416 |
+
Output:
|
417 |
+
|
418 |
+
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
|
419 |
+
'''
|
420 |
+
obs = torch.zeros(
|
421 |
+
(num_steps, num_envs) +
|
422 |
+
envs.single_observation_space.shape
|
423 |
+
).to(device)
|
424 |
+
actions = torch.zeros(
|
425 |
+
(num_steps, num_envs) +
|
426 |
+
action_shape
|
427 |
+
).to(device)
|
428 |
+
logprobs = torch.zeros((num_steps, num_envs)).to(device)
|
429 |
+
rewards = torch.zeros((num_steps, num_envs)).to(device)
|
430 |
+
dones = torch.zeros((num_steps, num_envs)).to(device)
|
431 |
+
values = torch.zeros((num_steps, num_envs)).to(device)
|
432 |
+
for i in range(0, num_steps):
|
433 |
+
# Rollout phase
|
434 |
+
global_step += 1
|
435 |
+
curr_obs = next_obs
|
436 |
+
done = next_done
|
437 |
+
with t.inference_mode():
|
438 |
+
logits = agent.actor(curr_obs).detach()
|
439 |
+
q_values = agent.critic(curr_obs).detach().squeeze(-1)
|
440 |
+
prob = Categorical(logits=logits)
|
441 |
+
action = prob.sample()
|
442 |
+
logprob = prob.log_prob(action)
|
443 |
+
next_obs, reward, next_done, info = envs.step(action.numpy())
|
444 |
+
next_obs = t.tensor(next_obs, device=device)
|
445 |
+
next_done = t.tensor(next_done, device=device)
|
446 |
+
actions[i] = action
|
447 |
+
dones[i] = done.detach().clone()
|
448 |
+
logprobs[i] = logprob
|
449 |
+
obs[i] = curr_obs
|
450 |
+
rewards[i] = t.tensor(reward, device=device)
|
451 |
+
values[i] = q_values
|
452 |
+
|
453 |
+
if writer is not None and "episode" in info.keys():
|
454 |
+
for item in info['episode']:
|
455 |
+
if item is None or 'r' not in item.keys():
|
456 |
+
continue
|
457 |
+
writer.add_scalar(
|
458 |
+
"charts/episodic_return", item["r"], global_step
|
459 |
+
)
|
460 |
+
writer.add_scalar(
|
461 |
+
"charts/episodic_length", item["l"], global_step
|
462 |
+
)
|
463 |
+
if global_step % 10 != 0:
|
464 |
+
continue
|
465 |
+
print(
|
466 |
+
f"global_step={global_step}, episodic_return={item['r']}"
|
467 |
+
)
|
468 |
+
print("charts/episodic_return", item["r"], global_step)
|
469 |
+
print("charts/episodic_length", item["l"], global_step)
|
470 |
+
return (
|
471 |
+
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
|
472 |
+
)
|
473 |
+
|
474 |
+
|
475 |
+
# + id="xdDhABIk5jyb" executionInfo={"status": "ok", "timestamp": 1677942331471, "user_tz": 0, "elapsed": 5, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
476 |
+
def reset_env(envs, device):
|
477 |
+
next_obs = torch.Tensor(envs.reset()).to(device)
|
478 |
+
next_done = torch.zeros(envs.num_envs).to(device)
|
479 |
+
return next_obs, next_done
|
480 |
+
|
481 |
+
|
482 |
+
# + id="5CoMpUVU7rFT" executionInfo={"status": "ok", "timestamp": 1677942331471, "user_tz": 0, "elapsed": 5, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
483 |
+
def get_action_shape(envs: gym.vector.SyncVectorEnv):
|
484 |
+
action_shape = envs.single_action_space.shape
|
485 |
+
assert action_shape is not None
|
486 |
+
assert isinstance(
|
487 |
+
envs.single_action_space, Discrete
|
488 |
+
), "only discrete action space is supported"
|
489 |
+
return action_shape
|
490 |
+
|
491 |
+
|
492 |
+
# + id="FHmn5kSUGFFu" executionInfo={"status": "ok", "timestamp": 1677942366007, "user_tz": 0, "elapsed": 251, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
493 |
+
# %%
|
494 |
+
def train_ppo(args: PPOArgs):
|
495 |
+
t0 = int(time.time())
|
496 |
+
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{t0}"
|
497 |
+
if args.track:
|
498 |
+
wandb_init(run_name, args)
|
499 |
+
log_dir = wandb.run.dir
|
500 |
+
writer = SummaryWriter(log_dir)
|
501 |
+
writer.add_text(
|
502 |
+
"hyperparameters",
|
503 |
+
"|param|value|\n|-|-|\n%s" % "\n".join([f"|{key}|{value}|"
|
504 |
+
for (key, value) in vars(args).items()]),
|
505 |
+
)
|
506 |
+
set_seed(args.seed)
|
507 |
+
torch.backends.cudnn.deterministic = args.torch_deterministic
|
508 |
+
device = torch.device(
|
509 |
+
"cuda" if torch.cuda.is_available() and args.cuda else "cpu"
|
510 |
+
)
|
511 |
+
envs = gym.vector.SyncVectorEnv([
|
512 |
+
make_env(args.env_id, args.seed + i, i, args.capture_video, run_name)
|
513 |
+
for i in range(args.num_envs)
|
514 |
+
])
|
515 |
+
agent = Agent(envs).to(device)
|
516 |
+
num_updates = args.total_timesteps // args.batch_size
|
517 |
+
(optimizer, scheduler) = make_optimizer(
|
518 |
+
agent, num_updates, args.learning_rate, 0.0
|
519 |
+
)
|
520 |
+
global_step = 0
|
521 |
+
old_approx_kl = 0.0
|
522 |
+
approx_kl = 0.0
|
523 |
+
value_loss = t.tensor(0.0)
|
524 |
+
policy_loss = t.tensor(0.0)
|
525 |
+
entropy_loss = t.tensor(0.0)
|
526 |
+
clipfracs = []
|
527 |
+
info = []
|
528 |
+
action_shape = get_action_shape(envs)
|
529 |
+
next_obs, next_done = reset_env(envs, device)
|
530 |
+
start_time = time.time()
|
531 |
+
for _ in range(num_updates):
|
532 |
+
rp = rollout_phase(
|
533 |
+
next_obs, next_done, agent, envs, writer, device, global_step,
|
534 |
+
action_shape, args.num_envs, args.num_steps,
|
535 |
+
)
|
536 |
+
next_obs, next_done, actions, dones, logprobs, obs, rewards, values = rp
|
537 |
+
with t.inference_mode():
|
538 |
+
next_value = rearrange(agent.critic(next_obs), "env 1 -> 1 env")
|
539 |
+
advantages = compute_advantages(
|
540 |
+
next_value, next_done, rewards, values, dones, device, args.gamma,
|
541 |
+
args.gae_lambda
|
542 |
+
)
|
543 |
+
clipfracs.clear()
|
544 |
+
mb: Minibatch
|
545 |
+
for _ in range(args.update_epochs):
|
546 |
+
minibatches = make_minibatches(
|
547 |
+
obs,
|
548 |
+
logprobs,
|
549 |
+
actions,
|
550 |
+
advantages,
|
551 |
+
values,
|
552 |
+
envs.single_observation_space.shape,
|
553 |
+
action_shape,
|
554 |
+
args.batch_size,
|
555 |
+
args.minibatch_size,
|
556 |
+
)
|
557 |
+
for mb in minibatches:
|
558 |
+
probs = Categorical(logits=agent.actor(mb.obs))
|
559 |
+
value_loss = calc_value_function_loss(
|
560 |
+
agent.critic, mb.obs, mb.returns, args.vf_coef
|
561 |
+
)
|
562 |
+
policy_loss = calc_policy_loss(
|
563 |
+
probs, mb.actions, mb.advantages, mb.logprobs,
|
564 |
+
args.clip_coef
|
565 |
+
)
|
566 |
+
entropy_loss = calc_entropy_loss(probs, args.ent_coef)
|
567 |
+
loss = policy_loss + entropy_loss - value_loss
|
568 |
+
loss.backward()
|
569 |
+
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
570 |
+
optimizer.step()
|
571 |
+
optimizer.zero_grad()
|
572 |
+
|
573 |
+
scheduler.step()
|
574 |
+
(y_pred, y_true) = (mb.values.cpu().numpy(), mb.returns.cpu().numpy())
|
575 |
+
var_y = np.var(y_true)
|
576 |
+
explained_var = (
|
577 |
+
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
|
578 |
+
)
|
579 |
+
with torch.no_grad():
|
580 |
+
newlogprob: t.Tensor = probs.log_prob(mb.actions)
|
581 |
+
logratio = newlogprob - mb.logprobs
|
582 |
+
ratio = logratio.exp()
|
583 |
+
old_approx_kl = (-logratio).mean().item()
|
584 |
+
approx_kl = (ratio - 1 - logratio).mean().item()
|
585 |
+
clipfracs += [
|
586 |
+
((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
|
587 |
+
]
|
588 |
+
writer.add_scalar(
|
589 |
+
"charts/learning_rate", optimizer.param_groups[0]["lr"],
|
590 |
+
global_step
|
591 |
+
)
|
592 |
+
writer.add_scalar("losses/value_loss", value_loss.item(), global_step)
|
593 |
+
writer.add_scalar("losses/policy_loss", policy_loss.item(), global_step)
|
594 |
+
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
|
595 |
+
writer.add_scalar("losses/old_approx_kl", old_approx_kl, global_step)
|
596 |
+
writer.add_scalar("losses/approx_kl", approx_kl, global_step)
|
597 |
+
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
|
598 |
+
writer.add_scalar(
|
599 |
+
"losses/explained_variance", explained_var, global_step
|
600 |
+
)
|
601 |
+
writer.add_scalar(
|
602 |
+
"charts/SPS",
|
603 |
+
int(global_step / (time.time() - start_time)),
|
604 |
+
global_step
|
605 |
+
)
|
606 |
+
if global_step % 1000 == 0:
|
607 |
+
print(
|
608 |
+
"steps per second (SPS):",
|
609 |
+
int(global_step / (time.time() - start_time))
|
610 |
+
)
|
611 |
+
print("losses/value_loss", value_loss.item())
|
612 |
+
print("losses/policy_loss", policy_loss.item())
|
613 |
+
print("losses/entropy", entropy_loss.item())
|
614 |
+
print(f'... training complete after {global_step} steps')
|
615 |
+
envs.close()
|
616 |
+
writer.close()
|
617 |
+
if args.track:
|
618 |
+
model_path = f'{wandb.run.dir}/model_state_dict.pt'
|
619 |
+
print(f'Saving model to {model_path}')
|
620 |
+
t.save(agent.state_dict(), model_path)
|
621 |
+
wandb.finish()
|
622 |
+
print('...wandb finished.')
|
623 |
+
|
624 |
+
|
625 |
+
# + id="-oZHTffJZP17" executionInfo={"status": "ok", "timestamp": 1677942433344, "user_tz": 0, "elapsed": 66678, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": ["c966d31ee30d43e0a8cc269a8a22b717", "294a378e56c44e4c9a3c58e8bf5b5f62", "473cc94ea22746f3a51e2186d973f741", "e3bb8c5a2c3841c2b33a7b8afb66a88f", "6133d8cbba964b7e8755e1c0691caf27", "1bf18f5fae9c4f58b2e360bc35251a94", "e820d38826494e248ca8974cccc1f338", "05eebe964b4b4c93b4aa0eac9ff865cb"]} outputId="0cfbb11c-831a-4622-8c01-afebae209d04"
|
626 |
+
# #%%wandb
|
627 |
+
if MAIN:
|
628 |
+
args = PPOArgs()
|
629 |
+
train_ppo(args)
|
630 |
+
|
631 |
+
# + colab={"base_uri": "https://localhost:8080/"} id="xJW6KL7QIj4s" outputId="7c529849-6d46-4a6a-def5-e1c0ef652c64"
|
632 |
+
# !python demo.py
|
633 |
+
|
634 |
+
# + id="P7ZfUlAqImIr" executionInfo={"status": "aborted", "timestamp": 1677942332655, "user_tz": 0, "elapsed": 4, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
|
635 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aeppl==0.0.33
|
3 |
+
aesara==2.7.9
|
4 |
+
aiofiles==23.1.0
|
5 |
+
aiohttp==3.8.4
|
6 |
+
aiosignal==1.3.1
|
7 |
+
alabaster==0.7.13
|
8 |
+
albumentations==1.2.1
|
9 |
+
altair==4.2.2
|
10 |
+
anyio==3.6.2
|
11 |
+
appdirs==1.4.4
|
12 |
+
argon2-cffi==21.3.0
|
13 |
+
argon2-cffi-bindings==21.2.0
|
14 |
+
arviz==0.12.1
|
15 |
+
astor==0.8.1
|
16 |
+
astropy==4.3.1
|
17 |
+
astunparse==1.6.3
|
18 |
+
async-timeout==4.0.2
|
19 |
+
atomicwrites==1.4.1
|
20 |
+
attrs==22.2.0
|
21 |
+
audioread==3.0.0
|
22 |
+
autograd==1.5
|
23 |
+
Babel==2.12.1
|
24 |
+
backcall==0.2.0
|
25 |
+
backports.zoneinfo==0.2.1
|
26 |
+
beautifulsoup4==4.6.3
|
27 |
+
bleach==6.0.0
|
28 |
+
blis==0.7.9
|
29 |
+
bokeh==2.4.3
|
30 |
+
branca==0.6.0
|
31 |
+
bs4==0.0.1
|
32 |
+
CacheControl==0.12.11
|
33 |
+
cachetools==5.3.0
|
34 |
+
catalogue==2.0.8
|
35 |
+
certifi==2022.12.7
|
36 |
+
cffi==1.15.1
|
37 |
+
cftime==1.6.2
|
38 |
+
chardet==4.0.0
|
39 |
+
charset-normalizer==3.0.1
|
40 |
+
click==8.1.3
|
41 |
+
clikit==0.6.2
|
42 |
+
cloudpickle==2.2.1
|
43 |
+
cmake==3.22.6
|
44 |
+
cmdstanpy==1.1.0
|
45 |
+
colorcet==3.0.1
|
46 |
+
colorlover==0.3.0
|
47 |
+
community==1.0.0b1
|
48 |
+
confection==0.0.4
|
49 |
+
cons==0.4.5
|
50 |
+
contextlib2==0.5.5
|
51 |
+
convertdate==2.4.0
|
52 |
+
crashtest==0.3.1
|
53 |
+
crcmod==1.7
|
54 |
+
cufflinks==0.17.3
|
55 |
+
cvxopt==1.3.0
|
56 |
+
cvxpy==1.2.3
|
57 |
+
cycler==0.11.0
|
58 |
+
cymem==2.0.7
|
59 |
+
Cython==0.29.33
|
60 |
+
dask==2022.2.1
|
61 |
+
datascience==0.17.6
|
62 |
+
db-dtypes==1.0.5
|
63 |
+
dbus-python==1.2.16
|
64 |
+
debugpy==1.6.4
|
65 |
+
decorator==4.4.2
|
66 |
+
defusedxml==0.7.1
|
67 |
+
distributed==2022.2.1
|
68 |
+
dlib==19.24.0
|
69 |
+
dm-tree==0.1.8
|
70 |
+
dnspython==2.3.0
|
71 |
+
docker-pycreds==0.4.0
|
72 |
+
docutils==0.16
|
73 |
+
dopamine-rl==1.0.5
|
74 |
+
earthengine-api==0.1.342
|
75 |
+
easydict==1.10
|
76 |
+
ecos==2.0.12
|
77 |
+
editdistance==0.5.3
|
78 |
+
einops==0.6.0
|
79 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.1/en_core_web_sm-3.4.1-py3-none-any.whl
|
80 |
+
entrypoints==0.4
|
81 |
+
ephem==4.1.4
|
82 |
+
et-xmlfile==1.1.0
|
83 |
+
etils==1.0.0
|
84 |
+
etuples==0.3.8
|
85 |
+
fa2==0.3.5
|
86 |
+
fastai==2.7.11
|
87 |
+
fastapi==0.92.0
|
88 |
+
fastcore==1.5.28
|
89 |
+
fastdownload==0.0.7
|
90 |
+
fastdtw==0.3.4
|
91 |
+
fastjsonschema==2.16.3
|
92 |
+
fastprogress==1.0.3
|
93 |
+
fastrlock==0.8.1
|
94 |
+
feather-format==0.4.1
|
95 |
+
ffmpy==0.3.0
|
96 |
+
filelock==3.9.0
|
97 |
+
firebase-admin==5.3.0
|
98 |
+
fix-yahoo-finance==0.0.22
|
99 |
+
Flask==2.2.3
|
100 |
+
flatbuffers==23.1.21
|
101 |
+
folium==0.12.1.post1
|
102 |
+
fonttools==4.38.0
|
103 |
+
frozenlist==1.3.3
|
104 |
+
fsspec==2023.1.0
|
105 |
+
future==0.16.0
|
106 |
+
gast==0.4.0
|
107 |
+
GDAL==3.3.2
|
108 |
+
gdown==4.4.0
|
109 |
+
gensim==3.6.0
|
110 |
+
geographiclib==1.52
|
111 |
+
geopy==1.17.0
|
112 |
+
gin-config==0.5.0
|
113 |
+
gitdb==4.0.10
|
114 |
+
GitPython==3.1.31
|
115 |
+
glob2==0.7
|
116 |
+
google==2.0.3
|
117 |
+
google-api-core==2.11.0
|
118 |
+
google-api-python-client==2.70.0
|
119 |
+
google-auth==2.16.1
|
120 |
+
google-auth-httplib2==0.1.0
|
121 |
+
google-auth-oauthlib==0.4.6
|
122 |
+
google-cloud-bigquery==3.4.2
|
123 |
+
google-cloud-bigquery-storage==2.18.1
|
124 |
+
google-cloud-core==2.3.2
|
125 |
+
google-cloud-datastore==2.11.1
|
126 |
+
google-cloud-firestore==2.7.3
|
127 |
+
google-cloud-language==2.6.1
|
128 |
+
google-cloud-storage==2.7.0
|
129 |
+
google-cloud-translate==3.8.4
|
130 |
+
google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz
|
131 |
+
google-crc32c==1.5.0
|
132 |
+
google-pasta==0.2.0
|
133 |
+
google-resumable-media==2.4.1
|
134 |
+
googleapis-common-protos==1.58.0
|
135 |
+
googledrivedownloader==0.4
|
136 |
+
gradio==3.20.0
|
137 |
+
graphviz==0.10.1
|
138 |
+
greenlet==2.0.2
|
139 |
+
grpcio==1.51.3
|
140 |
+
grpcio-status==1.48.2
|
141 |
+
gspread==3.4.2
|
142 |
+
gspread-dataframe==3.0.8
|
143 |
+
gym==0.25.2
|
144 |
+
gym-notices==0.0.8
|
145 |
+
h11==0.14.0
|
146 |
+
h5py==3.1.0
|
147 |
+
HeapDict==1.0.1
|
148 |
+
hijri-converter==2.2.4
|
149 |
+
holidays==0.20
|
150 |
+
holoviews==1.14.9
|
151 |
+
html5lib==1.0.1
|
152 |
+
httpcore==0.16.3
|
153 |
+
httpimport==0.5.18
|
154 |
+
httplib2==0.17.4
|
155 |
+
httpstan==4.6.1
|
156 |
+
httpx==0.23.3
|
157 |
+
humanize==0.5.1
|
158 |
+
hyperopt==0.1.2
|
159 |
+
idna==2.10
|
160 |
+
imageio==2.9.0
|
161 |
+
imagesize==1.4.1
|
162 |
+
imbalanced-learn==0.8.1
|
163 |
+
imblearn==0.0
|
164 |
+
imgaug==0.4.0
|
165 |
+
importlib-metadata==6.0.0
|
166 |
+
importlib-resources==5.12.0
|
167 |
+
imutils==0.5.4
|
168 |
+
inflect==2.1.0
|
169 |
+
intel-openmp==2023.0.0
|
170 |
+
ipykernel==5.3.4
|
171 |
+
ipython==7.9.0
|
172 |
+
ipython-genutils==0.2.0
|
173 |
+
ipython-sql==0.3.9
|
174 |
+
ipywidgets==7.7.1
|
175 |
+
itsdangerous==2.1.2
|
176 |
+
jax==0.4.4
|
177 |
+
jaxlib @ https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.4.4+cuda11.cudnn82-cp38-cp38-manylinux2014_x86_64.whl
|
178 |
+
jieba==0.42.1
|
179 |
+
Jinja2==3.1.2
|
180 |
+
joblib==1.2.0
|
181 |
+
jsonschema==4.3.3
|
182 |
+
jupyter-client==6.1.12
|
183 |
+
jupyter-console==6.1.0
|
184 |
+
jupyter_core==5.2.0
|
185 |
+
jupyterlab-pygments==0.2.2
|
186 |
+
jupyterlab-widgets==3.0.5
|
187 |
+
jupytext==1.14.5
|
188 |
+
kaggle==1.5.12
|
189 |
+
keras==2.11.0
|
190 |
+
keras-vis==0.4.1
|
191 |
+
kiwisolver==1.4.4
|
192 |
+
korean-lunar-calendar==0.3.1
|
193 |
+
langcodes==3.3.0
|
194 |
+
libclang==15.0.6.1
|
195 |
+
librosa==0.8.1
|
196 |
+
lightgbm==2.2.3
|
197 |
+
linkify-it-py==2.0.0
|
198 |
+
llvmlite==0.39.1
|
199 |
+
lmdb==0.99
|
200 |
+
locket==1.0.0
|
201 |
+
logical-unification==0.4.5
|
202 |
+
LunarCalendar==0.0.9
|
203 |
+
lxml==4.9.2
|
204 |
+
Markdown==3.4.1
|
205 |
+
markdown-it-py==2.2.0
|
206 |
+
MarkupSafe==2.1.2
|
207 |
+
marshmallow==3.19.0
|
208 |
+
matplotlib==3.5.3
|
209 |
+
matplotlib-venn==0.11.9
|
210 |
+
mdit-py-plugins==0.3.3
|
211 |
+
mdurl==0.1.2
|
212 |
+
miniKanren==1.0.3
|
213 |
+
missingno==0.5.2
|
214 |
+
mistune==0.8.4
|
215 |
+
mizani==0.8.1
|
216 |
+
mkl==2019.0
|
217 |
+
mlxtend==0.14.0
|
218 |
+
more-itertools==9.1.0
|
219 |
+
moviepy==0.2.3.5
|
220 |
+
mpmath==1.2.1
|
221 |
+
msgpack==1.0.4
|
222 |
+
multidict==6.0.4
|
223 |
+
multipledispatch==0.6.0
|
224 |
+
multitasking==0.0.11
|
225 |
+
murmurhash==1.0.9
|
226 |
+
music21==5.5.0
|
227 |
+
natsort==5.5.0
|
228 |
+
nbclient==0.7.2
|
229 |
+
nbconvert==6.5.4
|
230 |
+
nbformat==5.7.3
|
231 |
+
netCDF4==1.6.2
|
232 |
+
networkx==3.0
|
233 |
+
nibabel==3.0.2
|
234 |
+
nltk==3.7
|
235 |
+
notebook==6.3.0
|
236 |
+
numba==0.56.4
|
237 |
+
numexpr==2.8.4
|
238 |
+
numpy==1.22.4
|
239 |
+
oauth2client==4.1.3
|
240 |
+
oauthlib==3.2.2
|
241 |
+
opencv-contrib-python==4.6.0.66
|
242 |
+
opencv-python==4.6.0.66
|
243 |
+
opencv-python-headless==4.7.0.72
|
244 |
+
openpyxl==3.0.10
|
245 |
+
opt-einsum==3.3.0
|
246 |
+
orjson==3.8.7
|
247 |
+
osqp==0.6.2.post0
|
248 |
+
packaging==23.0
|
249 |
+
palettable==3.3.0
|
250 |
+
pandas==1.3.5
|
251 |
+
pandas-datareader==0.9.0
|
252 |
+
pandas-gbq==0.17.9
|
253 |
+
pandas-profiling==1.4.1
|
254 |
+
pandocfilters==1.5.0
|
255 |
+
panel==0.14.3
|
256 |
+
param==1.12.3
|
257 |
+
parso==0.8.3
|
258 |
+
partd==1.3.0
|
259 |
+
pastel==0.2.1
|
260 |
+
pathlib==1.0.1
|
261 |
+
pathtools==0.1.2
|
262 |
+
pathy==0.10.1
|
263 |
+
patsy==0.5.3
|
264 |
+
pep517==0.13.0
|
265 |
+
pexpect==4.8.0
|
266 |
+
pickleshare==0.7.5
|
267 |
+
Pillow==8.4.0
|
268 |
+
pip-tools==6.6.2
|
269 |
+
platformdirs==3.0.0
|
270 |
+
plotly==5.5.0
|
271 |
+
plotnine==0.10.1
|
272 |
+
pluggy==0.7.1
|
273 |
+
pooch==1.7.0
|
274 |
+
portpicker==1.3.9
|
275 |
+
prefetch-generator==1.0.3
|
276 |
+
preshed==3.0.8
|
277 |
+
prettytable==3.6.0
|
278 |
+
progressbar2==3.38.0
|
279 |
+
prometheus-client==0.16.0
|
280 |
+
promise==2.3
|
281 |
+
prompt-toolkit==2.0.10
|
282 |
+
prophet==1.1.2
|
283 |
+
proto-plus==1.22.2
|
284 |
+
protobuf==3.19.6
|
285 |
+
psutil==5.4.8
|
286 |
+
psycopg2==2.9.5
|
287 |
+
ptyprocess==0.7.0
|
288 |
+
py==1.11.0
|
289 |
+
pyarrow==9.0.0
|
290 |
+
pyasn1==0.4.8
|
291 |
+
pyasn1-modules==0.2.8
|
292 |
+
pycocotools==2.0.6
|
293 |
+
pycparser==2.21
|
294 |
+
pycryptodome==3.17
|
295 |
+
pyct==0.5.0
|
296 |
+
pydantic==1.10.5
|
297 |
+
pydata-google-auth==1.7.0
|
298 |
+
pydot==1.3.0
|
299 |
+
pydot-ng==2.0.0
|
300 |
+
pydotplus==2.0.2
|
301 |
+
PyDrive==1.3.1
|
302 |
+
pydub==0.25.1
|
303 |
+
pyerfa==2.0.0.1
|
304 |
+
pygame==2.2.0
|
305 |
+
Pygments==2.6.1
|
306 |
+
PyGObject==3.36.0
|
307 |
+
pylev==1.4.0
|
308 |
+
pymc==4.1.4
|
309 |
+
PyMeeus==0.5.12
|
310 |
+
pymongo==4.3.3
|
311 |
+
pymystem3==0.2.0
|
312 |
+
PyOpenGL==3.1.6
|
313 |
+
pyparsing==3.0.9
|
314 |
+
pyrsistent==0.19.3
|
315 |
+
pysimdjson==3.2.0
|
316 |
+
PySocks==1.7.1
|
317 |
+
pystan==3.3.0
|
318 |
+
pytest==3.6.4
|
319 |
+
python-apt==2.0.1
|
320 |
+
python-dateutil==2.8.2
|
321 |
+
python-louvain==0.16
|
322 |
+
python-multipart==0.0.6
|
323 |
+
python-slugify==8.0.1
|
324 |
+
python-utils==3.5.2
|
325 |
+
pytz==2022.7.1
|
326 |
+
pyviz-comms==2.2.1
|
327 |
+
PyWavelets==1.4.1
|
328 |
+
PyYAML==6.0
|
329 |
+
pyzmq==23.2.1
|
330 |
+
qdldl==0.1.5.post3
|
331 |
+
qudida==0.0.4
|
332 |
+
regex==2022.6.2
|
333 |
+
requests==2.25.1
|
334 |
+
requests-oauthlib==1.3.1
|
335 |
+
requests-unixsocket==0.2.0
|
336 |
+
resampy==0.4.2
|
337 |
+
rfc3986==1.5.0
|
338 |
+
rpy2==3.5.5
|
339 |
+
rsa==4.9
|
340 |
+
scikit-image==0.19.3
|
341 |
+
scikit-learn==1.2.1
|
342 |
+
scipy==1.10.1
|
343 |
+
screen-resolution-extra==0.0.0
|
344 |
+
scs==3.2.2
|
345 |
+
seaborn==0.11.2
|
346 |
+
Send2Trash==1.8.0
|
347 |
+
sentry-sdk==1.16.0
|
348 |
+
setproctitle==1.3.2
|
349 |
+
shapely==2.0.1
|
350 |
+
six==1.15.0
|
351 |
+
sklearn-pandas==2.2.0
|
352 |
+
smart-open==6.3.0
|
353 |
+
smmap==5.0.0
|
354 |
+
sniffio==1.3.0
|
355 |
+
snowballstemmer==2.2.0
|
356 |
+
sortedcontainers==2.4.0
|
357 |
+
soundfile==0.12.1
|
358 |
+
spacy==3.4.4
|
359 |
+
spacy-legacy==3.0.12
|
360 |
+
spacy-loggers==1.0.4
|
361 |
+
Sphinx==3.5.4
|
362 |
+
sphinxcontrib-applehelp==1.0.4
|
363 |
+
sphinxcontrib-devhelp==1.0.2
|
364 |
+
sphinxcontrib-htmlhelp==2.0.1
|
365 |
+
sphinxcontrib-jsmath==1.0.1
|
366 |
+
sphinxcontrib-qthelp==1.0.3
|
367 |
+
sphinxcontrib-serializinghtml==1.1.5
|
368 |
+
SQLAlchemy==1.4.46
|
369 |
+
sqlparse==0.4.3
|
370 |
+
srsly==2.4.6
|
371 |
+
starlette==0.25.0
|
372 |
+
statsmodels==0.13.5
|
373 |
+
sympy==1.7.1
|
374 |
+
tables==3.7.0
|
375 |
+
tabulate==0.8.10
|
376 |
+
tblib==1.7.0
|
377 |
+
tenacity==8.2.2
|
378 |
+
tensorboard==2.11.2
|
379 |
+
tensorboard-data-server==0.6.1
|
380 |
+
tensorboard-plugin-wit==1.8.1
|
381 |
+
tensorflow==2.11.0
|
382 |
+
tensorflow-datasets==4.8.3
|
383 |
+
tensorflow-estimator==2.11.0
|
384 |
+
tensorflow-gcs-config==2.11.0
|
385 |
+
tensorflow-hub==0.12.0
|
386 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
387 |
+
tensorflow-metadata==1.12.0
|
388 |
+
tensorflow-probability==0.19.0
|
389 |
+
termcolor==2.2.0
|
390 |
+
terminado==0.13.3
|
391 |
+
text-unidecode==1.3
|
392 |
+
textblob==0.15.3
|
393 |
+
thinc==8.1.7
|
394 |
+
threadpoolctl==3.1.0
|
395 |
+
tifffile==2023.2.27
|
396 |
+
tinycss2==1.2.1
|
397 |
+
toml==0.10.2
|
398 |
+
tomli==2.0.1
|
399 |
+
toolz==0.12.0
|
400 |
+
torch @ https://download.pytorch.org/whl/cu116/torch-1.13.1%2Bcu116-cp38-cp38-linux_x86_64.whl
|
401 |
+
torchaudio @ https://download.pytorch.org/whl/cu116/torchaudio-0.13.1%2Bcu116-cp38-cp38-linux_x86_64.whl
|
402 |
+
torchsummary==1.5.1
|
403 |
+
torchtext==0.14.1
|
404 |
+
torchtyping==0.1.4
|
405 |
+
torchvision @ https://download.pytorch.org/whl/cu116/torchvision-0.14.1%2Bcu116-cp38-cp38-linux_x86_64.whl
|
406 |
+
tornado==6.2
|
407 |
+
tqdm==4.64.1
|
408 |
+
traitlets==5.7.1
|
409 |
+
tweepy==3.10.0
|
410 |
+
typeguard==2.13.3
|
411 |
+
typer==0.7.0
|
412 |
+
typing_extensions==4.5.0
|
413 |
+
tzlocal==1.5.1
|
414 |
+
uc-micro-py==1.0.1
|
415 |
+
uritemplate==4.1.1
|
416 |
+
urllib3==1.26.14
|
417 |
+
uvicorn==0.20.0
|
418 |
+
vega-datasets==0.9.0
|
419 |
+
wandb==0.13.10
|
420 |
+
wasabi==0.10.1
|
421 |
+
wcwidth==0.2.6
|
422 |
+
webargs==8.2.0
|
423 |
+
webencodings==0.5.1
|
424 |
+
websockets==10.4
|
425 |
+
Werkzeug==2.2.3
|
426 |
+
widgetsnbextension==3.6.2
|
427 |
+
wordcloud==1.8.2.2
|
428 |
+
wrapt==1.15.0
|
429 |
+
xarray==2022.12.0
|
430 |
+
xarray-einstats==0.5.1
|
431 |
+
xgboost==1.7.4
|
432 |
+
xkit==0.0.0
|
433 |
+
xlrd==1.2.0
|
434 |
+
xlwt==1.3.0
|
435 |
+
yarl==1.8.2
|
436 |
+
yellowbrick==1.5
|
437 |
+
zict==2.2.0
|
438 |
+
zipp==3.15.0
|