File size: 17,423 Bytes
fb238e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# -*- encoding: utf-8 -*-
'''
Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@File : finetune_bart.py
@Time : 2022/10/28 18:23
@Author : Qi Yang
@Version : 1.0
@Contact : [email protected]
@License : (C)Copyright 2022-2023, CCNL-IDEA
'''
from fengshen.models.model_utils import configure_optimizers
from fengshen.data.universal_datamodule import UniversalDataModule
from fengshen.utils.universal_checkpoint import UniversalCheckpoint
from fengshen.utils import chinese_char_tokenize
from utils import truncate_sequence, white_space_fix
from utils import LabelSmoothingCrossEntropy
import sys
import os
import torch
import argparse
import pytorch_lightning as pl
from dataclasses import dataclass
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor
from transformers import BartForConditionalGeneration
from transformers import BertTokenizer, AutoTokenizer
from torchmetrics.text.rouge import ROUGEScore
sys.path.append('../../../')
@dataclass
class QGT5Collator:
@ staticmethod
def add_data_specific_args(parent_args):
# the hyperparameters should be determined according to the max length of context in dataset
parser = parent_args.add_argument_group('BART DIalo Collator')
parser.add_argument('--max_seq_length', default=512, type=int)
parser.add_argument('--max_src_length', default=32, type=int)
parser.add_argument('--max_kno_length', default=416, type=int)
parser.add_argument('--max_tgt_length', default=64, type=int)
parser.add_argument('--mask_ans_style',
default='normal',
type=str,
choices=['normal', 'unmask', 'anstoken', 'postag', 'anstoken_multispan', 'postag_multispan', 'normal_multispan'])
return parent_args
def __init__(self, tokenizer, args):
self.args = args
self.tokenizer = tokenizer
self.max_seq_length = args.max_seq_length
self.print_example = True
self.mask_ans_style = args.mask_ans_style
self.do_eval_only = args.do_eval_only
self.tokenizer_type = args.tokenizer_type
def encode(self, x, y):
if self.tokenizer_type == "bert":
x = x
y = y
else:
# t5 sentence piece
x = self.tokenizer.bos_token + x + self.tokenizer.eos_token
y = y + self.tokenizer.eos_token
encoder_input = self.tokenizer.encode_plus(
x,
max_length=self.args.max_kno_length + self.args.max_src_length,
padding="max_length",
truncation=True,
return_tensors='pt'
)
decoder_output = self.tokenizer.encode_plus(
y,
max_length=self.args.max_tgt_length,
padding="max_length",
truncation=True,
return_tensors='pt'
)
return encoder_input, decoder_output
def mask(self, s):
def replace_span(source, target, sptoken):
ans_bos, ans_eos = s["ans_span"][0]
return source[:ans_bos] + sptoken + source[ans_eos:]
def replace_all(source, target, sptoken):
return source.replace(target, sptoken)
if 'multispan' in self.mask_ans_style:
fn = replace_all
else:
fn = replace_span
# unmask: 北京是中国的首都
if 'unmask' in self.mask_ans_style:
return s["context"]
# normal: 北京是 <mask> 的首都
if 'normal' in self.mask_ans_style:
self.anstoken = self.tokenizer.mask_token
masked_context = fn(s["context"], s["answer"][0], self.anstoken)
return masked_context
# anstoken: 北京是 [ANS] 的首都
if 'anstoken' in self.mask_ans_style:
anstoken_dict = {
"bert": "[ANS]",
"bart": "<ans>"
}
self.anstoken = anstoken_dict[self.tokenizer_type]
masked_context = fn(s["context"], s["answer"][0], self.anstoken)
return masked_context
# postag: 北京是 <beg> 中国 <eos> 的首都
if 'postag' in self.mask_ans_style:
begtoken, endtoken = "<beg>", "<eos>"
self.anstoken = begtoken + s["answer"][0] + endtoken
masked_context = fn(s["context"], s["answer"][0], self.anstoken)
return masked_context
return masked_context
def prompt(self, context, answer, question):
pre_prompt, mid_prompt, post_prompt = "知识:", "回答:", "问题:" # prompt
context = truncate_sequence(context, self.args.max_kno_length-len(pre_prompt)-1)
# used in squad-2.0
# noted that src and tgt is reversed in qg
answer = truncate_sequence(answer, self.args.max_src_length - len(mid_prompt)-1)
question = truncate_sequence(question, self.args.max_tgt_length-len(post_prompt)-1)
x_trunc = f'{pre_prompt}{context}{mid_prompt}{answer}'
y_trunc = f'{post_prompt}{question}'
return x_trunc, y_trunc
def __call__(self, samples):
"""
ans_num = 1 适用于 Train 数据只有 1 条 answer 取第一条情况
ans_num > 1 适用于 Dev 数据有多条 answer 情况
Input:
input_ids: input_ids (text + answer)
attn_mask: input attn mask
labels: decoder_ids (question)
"""
input_ids, attn_mask, labels = [], [], []
ans, qes, ctx, ans_spans, idxs, imp = [], [], [], [], [], []
for s in samples:
if self.do_eval_only:
# log origin answer to compare
ans.append(s["answer"])
qes.append(s["question"])
ctx.append(s["context"])
ans_spans.append(s["ans_span"])
idxs.append(s["idx"])
if "is_impossible" in s:
imp.append(s["is_impossible"])
else:
imp.append(False) # SQUAD 1.0 don't have is_impossible
if not s["is_impossible"]: # have ans and ans_span
context = self.mask(s)
answer = s["answer"][0]
question = s["question"]
else: # no ans and ans_span
context = s["context"]
answer = "无答案"
question = s["question"]
x_trunc, y_trunc = self.prompt(context, answer, question)
encoder_input, decoder_output = self.encode(x_trunc, y_trunc)
input_ids.append(encoder_input["input_ids"])
attn_mask.append(encoder_input["attention_mask"])
labels.append(decoder_output["input_ids"])
labels = torch.cat(labels)
if self.tokenizer_type == "bart":
end_token_index = torch.where(labels == self.tokenizer.eos_token_id)[1]
else:
end_token_index = torch.where(labels == self.tokenizer.sep_token_id)[1]
for idx, end_idx in enumerate(end_token_index):
labels[idx][end_idx + 1:] = -100 # cross entropy cal
data = {
'input_ids': torch.cat(input_ids),
'attention_mask': torch.cat(attn_mask),
'labels': labels
}
if self.do_eval_only:
data.update({
'answer': ans,
'question': qes,
'context': ctx,
'ans_span': ans_spans,
'idx': idxs,
'is_impossible': imp
})
if self.print_example:
print(x_trunc)
print(y_trunc)
self.print_example = False
return data
class BARTFinetuneModel(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--model_path', type=str, default='')
parser.add_argument('--learning_rate', default=1e-5, type=float)
parser.add_argument('--min_learning_rate', default=1e-7, type=float)
parser.add_argument('--lr_decay_steps', default=0, type=int)
parser.add_argument('--lr_decay_ratio', default=1.0, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup_steps', default=1000, type=int)
parser.add_argument('--warmup_ratio', default=0.01, type=float)
parser.add_argument('--label_smooth', default=0, type=float)
parser.add_argument('--new_token_path', default="./", type=str) # save new token after add special token
parser.add_argument('--adam_beta1', default=0.9, type=float)
parser.add_argument('--adam_beta2', default=0.999, type=float)
parser.add_argument('--adam_epsilon', default=1e-8, type=float)
parser.add_argument('--scheduler_type', default='polynomial', type=str)
return parent_args
def __init__(self, tokenizer, args):
super().__init__()
self.save_hyperparameters(args)
self.model = BartForConditionalGeneration.from_pretrained(args.model_path)
self.tokenizer = tokenizer
# add special token ans
# self.tokenizer.save_vocabulary(self.args.model_path)
new_vocab = args.model_path+"/sp_vocab/"
if not os.path.exists(new_vocab):
os.makedirs(new_vocab)
self.tokenizer.save_pretrained(new_vocab)
self.model.resize_token_embeddings(len(tokenizer))
self.vocab_size = len(tokenizer)
self.rougescore = ROUGEScore(rouge_keys=('rougeL'), normalizer=lambda x: x)
if self.hparams.label_smooth:
self.loss_fct = LabelSmoothingCrossEntropy(smoothing=0.1)
def setup(self, stage) -> None:
if stage == 'fit':
train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()
# Calculate total steps
if self.trainer.max_epochs > 0:
world_size = self.trainer.world_size
tb_size = self.hparams.train_batchsize * max(1, world_size)
ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
self.total_steps = (len(train_loader.dataset) *
self.trainer.max_epochs // tb_size) // ab_size
else:
self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches
print('Total steps: {}' .format(self.total_steps))
def configure_optimizers(self):
return configure_optimizers(self)
def training_step(self, batch, batch_idx):
output = self.model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
labels=batch['labels'])
loss = output.loss
if self.hparams.label_smooth:
loss = self.loss_fct(output.logits.view(-1, self.vocab_size), batch["labels"].view(-1))
self.log('train_loss', loss, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
output = self.model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
labels=batch['labels'])
acc = self.compute_acc(output.logits, batch['labels'])
self.log('val_loss', output.loss, sync_dist=True)
self.log('val_acc', acc, sync_dist=True)
self.log('val_ppl', torch.exp(output.loss), sync_dist=True)
cond_output = self.model.generate(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
do_sample=True,
num_beams=5,
early_stopping=True,
max_length=64,
top_p=0.9,
)
batch_label = torch.where(batch["labels"] != -100, batch["labels"], self.tokenizer.pad_token_id)
pred = self.tokenizer.batch_decode(cond_output, clean_up_tokenization_spaces=True, skip_special_tokens=True)
ques = self.tokenizer.batch_decode(batch_label, clean_up_tokenization_spaces=True, skip_special_tokens=True)
pred = [chinese_char_tokenize(white_space_fix(p)) for p in pred]
ques = [chinese_char_tokenize(white_space_fix(q)) for q in ques]
self.rougescore.update(pred, ques)
return pred
def validation_epoch_end(self, validation_step_outputs):
rouge = self.rougescore.compute()
self.log('val_rouge', rouge["rougeL_fmeasure"], sync_dist=True)
def on_predict_start(self):
self.loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
def predict_step(self, batch, batch_idx):
output = self.model(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
labels=batch['labels'])
loss_tensor = self.loss_fct(output.logits.transpose(1, 2), batch["labels"])
if self.hparams.tokenizer_type == 'bart':
eos_index = torch.where(batch['labels'] == self.tokenizer.eos_token_id)[1]
elif self.hparams.tokenizer_type == 'bert':
eos_index = torch.where(batch['labels'] == self.tokenizer.sep_token_id)[1]
loss = torch.sum(loss_tensor, dim=1) / eos_index
with torch.no_grad():
cond_output = self.model.generate(
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
do_sample=True,
num_beams=5,
max_length=64,
top_p=0.9,
output_scores=True,
return_dict_in_generate=True
)
pred = self.tokenizer.batch_decode(
cond_output.sequences, clean_up_tokenization_spaces=True, skip_special_tokens=True) # ['sequences']
pred = [white_space_fix(p) for p in pred] # remove prompt and white space
score = cond_output.sequences_scores
return pred, score, loss
def compute_acc(self, logits, labels):
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
acc = torch.sum(corr.float())/y_true.shape[0]
return acc
def on_save_checkpoint(self, checkpoint) -> None:
if self.trainer._accelerator_connector.cluster_environment.global_rank() == 0:
self.model.save_pretrained(os.path.join(
self.trainer.checkpoint_callback.dirpath,
'hf_pretrained_epoch{}_step{}'.format(checkpoint['epoch'], checkpoint['global_step'])))
def on_load_checkpoint(self, checkpoint) -> None:
global_step_offset = checkpoint["global_step"]
if 'global_samples' in checkpoint:
self.consumed_samples = checkpoint['global_samples']
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset
def get_tokenizer(tokenizer_type, pretrained_model_path):
if tokenizer_type == 'bart':
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_path, use_fast=False, additional_special_tokens=["<ans>", "<beg>", "<end>"])
print(len(tokenizer))
elif tokenizer_type == 'bert':
tokenizer = BertTokenizer.from_pretrained(
pretrained_model_path, use_fast=False, additional_special_tokens=["[ANS]"])
return tokenizer
def main():
total_parser = argparse.ArgumentParser("Finetune BART for QG")
total_parser.add_argument('--do_eval_only', action='store_true', default=False)
total_parser.add_argument('--tokenizer_type', type=str, default="bart", choices=['bart', 'bert'])
total_parser.add_argument('--tensorboard_dir', type=str, default="bart")
total_parser.add_argument('--deepspeed')
total_parser = UniversalDataModule.add_data_specific_args(total_parser)
total_parser = QGT5Collator.add_data_specific_args(total_parser)
total_parser = Trainer.add_argparse_args(total_parser)
total_parser = UniversalCheckpoint.add_argparse_args(total_parser)
total_parser = BARTFinetuneModel.add_model_specific_args(total_parser)
args = total_parser.parse_args()
tokenizer = get_tokenizer(args.tokenizer_type, args.model_path)
collator = QGT5Collator(tokenizer=tokenizer, args=args)
data_model = UniversalDataModule(collate_fn=collator, tokenizer=tokenizer, args=args)
print("Data load complete...")
if args.deepspeed is not None:
os.environ['PL_DEEPSPEED_CONFIG_PATH'] = args.deepspeed
model = BARTFinetuneModel(tokenizer, args)
checkpoint_callback = UniversalCheckpoint(args)
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer = Trainer.from_argparse_args(args,
callbacks=[checkpoint_callback, lr_monitor]
)
if not args.do_eval_only:
trainer.fit(model, data_model)
if __name__ == '__main__':
main()
|