Spaces:
Running
Running
File size: 2,920 Bytes
2649e2f d364ff4 2649e2f c7602de 2649e2f 2325a30 2649e2f 2325a30 2649e2f d364ff4 2649e2f 2325a30 d364ff4 2325a30 2649e2f d364ff4 2649e2f d364ff4 2649e2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import streamlit as st
from PIL import Image
import google.generativeai as genai
import io
import os
import base64
# Configure Google Gemini API (replace with your actual API key)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
if not GOOGLE_API_KEY:
st.error("Please set the GOOGLE_API_KEY environment variable.")
st.stop()
genai.configure(api_key=GOOGLE_API_KEY)
# Function to generate the modified image
def generate_modified_image(uploaded_image, background_description):
try:
model = genai.GenerativeModel('gemini-1.5-flash')
img = Image.open(uploaded_image)
prompt_parts = [
"You are an AI that can modify the background of an image based on a text description.",
"Here is the image:",
img, # Pass the PIL Image object directly
f"Modify the background of this image to: '{background_description}'. Be creative and make the new background look realistic and integrated with the foreground.",
"Output only the modified image. Ensure the output is a valid image format (like PNG or JPEG) encoded as bytes."
]
response = model.generate_content(prompt_parts, stream=False)
response.resolve()
if response and hasattr(response, 'parts') and len(response.parts) > 0:
for part in response.parts:
try:
# Try to get the image data directly if it's a blob
if hasattr(part, 'blob'):
image_bytes = part.blob.data
return Image.open(io.BytesIO(image_bytes))
elif hasattr(part, 'text'):
st.warning(f"Received text response instead of image: {part.text}")
else:
st.warning(f"Unexpected part type in response: {part}")
except Exception as part_err:
st.error(f"Error processing response part: {part_err}")
st.error("No valid image data found in the response.")
return None
else:
st.error("Failed to get a valid response from the model.")
return None
except Exception as e:
st.error(f"An error occurred during generation: {e}")
return None
# Streamlit web app
st.title("Image Background Modifier")
uploaded_file = st.file_uploader("Upload an image...", type=["png", "jpg", "jpeg"])
background_text = st.text_area("Describe the desired background:", "")
if uploaded_file is not None and background_text:
if st.button("Modify Background"):
with st.spinner("Generating modified image..."):
modified_image = generate_modified_image(uploaded_file, background_text)
if modified_image:
st.image(modified_image, caption="Modified Image", use_column_width=True)
else:
st.info("Please upload an image and describe the desired background.") |