File size: 2,548 Bytes
c20fb92
 
5abb257
c20fb92
 
 
 
 
 
76acf42
2ee8b8c
 
 
 
 
 
c20fb92
a5948fd
 
 
 
 
 
 
76acf42
a5948fd
c20fb92
 
 
 
2ee8b8c
c20fb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abb257
c20fb92
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import streamlit as st
from PIL import Image
from huggingface_hub import InferenceClient
import io

def analyze_image_with_maira(image):
    """Analyzes the image using the Maira-2 model via the Hugging Face Inference API.
    """
    try:
        # Prepare image data - send as bytes directly to 'inputs'
        image_bytes = io.BytesIO()
        if image.mode == "RGBA":  # Handle RGBA images (if any)
            image = image.convert("RGB")
        image.save(image_bytes, format="JPEG")
        image_bytes = image_bytes.getvalue()  # Get the bytes

        client = InferenceClient()  # No token needed inside the Space
        result = client.post(
            json={
                "inputs": {
                    "image": image_bytes.decode(encoding="latin-1"),  #Needs to be decoded
                    "question": "Analyze this chest X-ray image and provide detailed findings. Include any abnormalities, their locations, and potential diagnoses. Be as specific as possible.",
                            }
            },
            model="microsoft/maira-2",  # Specify the model
            task="visual-question-answering"
        )
        return result

    except Exception as e:
        st.error(f"An error occurred: {e}")
        return None


# --- Streamlit App ---

def main():
    st.title("Chest X-ray Analysis with Maira-2 (Hugging Face Spaces)")
    st.write(
        "Upload a chest X-ray image. This app uses the Maira-2 model within this Hugging Face Space."
    )

    uploaded_file = st.file_uploader("Choose a chest X-ray image (JPG, PNG)", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Image", use_column_width=True)

        with st.spinner("Analyzing image with Maira-2..."):
            analysis_results = analyze_image_with_maira(image)

        if analysis_results:
            # --- Results Display (VQA format) ---
            if isinstance(analysis_results, dict) and 'answer' in analysis_results:
                st.subheader("Findings:")
                st.write(analysis_results['answer'])
            else:
                st.warning("Unexpected API response format.")
                st.write("Raw API response:", analysis_results)
        else:
            st.error("Failed to get analysis results.")

    else:
        st.write("Please upload an image.")

    st.write("---")
    st.write("Disclaimer: For informational purposes only.  Not medical advice.")

if __name__ == "__main__":
    main()