skjaini commited on
Commit
774af3e
·
verified ·
1 Parent(s): a5948fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -41
app.py CHANGED
@@ -1,44 +1,45 @@
1
  import streamlit as st
2
  from PIL import Image
3
- from huggingface_hub import InferenceClient
4
  import io
5
 
6
- def analyze_image_with_maira(image):
7
- """Analyzes the image using the Maira-2 model via the Hugging Face Inference API.
8
- """
9
- try:
10
- # Prepare image data - send as bytes directly to 'inputs'
11
- image_bytes = io.BytesIO()
12
- if image.mode == "RGBA": # Handle RGBA images (if any)
13
- image = image.convert("RGB")
14
- image.save(image_bytes, format="JPEG")
15
- image_bytes = image_bytes.getvalue() # Get the bytes
16
-
17
- client = InferenceClient() # No token needed inside the Space
18
- result = client.post(
19
- json={
20
- "inputs": {
21
- "image": image_bytes.decode(encoding="latin-1"), #Needs to be decoded
22
- "question": "Analyze this chest X-ray image and provide detailed findings. Include any abnormalities, their locations, and potential diagnoses. Be as specific as possible.",
23
- }
24
- },
25
- model="microsoft/maira-2", # Specify the model
26
- task="visual-question-answering"
27
- )
28
- return result
29
 
 
 
 
 
 
 
 
 
30
  except Exception as e:
31
- st.error(f"An error occurred: {e}")
32
  return None
33
 
 
 
 
 
 
 
 
 
34
 
35
  # --- Streamlit App ---
36
 
37
  def main():
38
- st.title("Chest X-ray Analysis with Maira-2 (Hugging Face Spaces)")
39
- st.write(
40
- "Upload a chest X-ray image. This app uses the Maira-2 model within this Hugging Face Space."
41
- )
 
 
 
42
 
43
  uploaded_file = st.file_uploader("Choose a chest X-ray image (JPG, PNG)", type=["jpg", "jpeg", "png"])
44
 
@@ -47,18 +48,26 @@ def main():
47
  st.image(image, caption="Uploaded Image", use_column_width=True)
48
 
49
  with st.spinner("Analyzing image with Maira-2..."):
50
- analysis_results = analyze_image_with_maira(image)
51
-
52
- if analysis_results:
53
- # --- Results Display (VQA format) ---
54
- if isinstance(analysis_results, dict) and 'answer' in analysis_results:
55
- st.subheader("Findings:")
56
- st.write(analysis_results['answer'])
57
- else:
58
- st.warning("Unexpected API response format.")
59
- st.write("Raw API response:", analysis_results)
60
- else:
61
- st.error("Failed to get analysis results.")
 
 
 
 
 
 
 
 
62
 
63
  else:
64
  st.write("Please upload an image.")
@@ -66,5 +75,6 @@ def main():
66
  st.write("---")
67
  st.write("Disclaimer: For informational purposes only. Not medical advice.")
68
 
 
69
  if __name__ == "__main__":
70
  main()
 
1
  import streamlit as st
2
  from PIL import Image
3
+ from transformers import pipeline
4
  import io
5
 
6
+ # --- Configuration ---
7
+ # Specify the model
8
+ MODEL_NAME = "microsoft/maira-2"
9
+
10
+ # --- Model Loading (using pipeline) ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ @st.cache_resource # Cache the pipeline for performance
13
+ def load_pipeline():
14
+ """Loads the VQA pipeline."""
15
+ try:
16
+ # Explicitly set device if CUDA is available, otherwise use CPU
17
+ device = 0 if any(tf.config.list_physical_devices('GPU')) else -1
18
+ vqa_pipeline = pipeline("visual-question-answering", model=MODEL_NAME, device=device) # Add device
19
+ return vqa_pipeline
20
  except Exception as e:
21
+ st.error(f"Error loading pipeline: {e}")
22
  return None
23
 
24
+ # --- Image Preprocessing (Keep as bytes) ---
25
+ def prepare_image(image):
26
+ """Prepares the PIL Image object for the pipeline (handles RGBA)."""
27
+ image_bytes = io.BytesIO()
28
+ if image.mode == "RGBA":
29
+ image = image.convert("RGB")
30
+ image.save(image_bytes, format="JPEG")
31
+ return image_bytes.getvalue() # Return bytes directly
32
 
33
  # --- Streamlit App ---
34
 
35
  def main():
36
+ st.title("Chest X-ray Analysis with Maira-2 (Transformers Pipeline)")
37
+ st.write("Upload a chest X-ray image. This app uses the Maira-2 model via the Transformers library.")
38
+
39
+ vqa_pipeline = load_pipeline()
40
+ if vqa_pipeline is None:
41
+ st.warning("Pipeline not loaded. Predictions will not be available.")
42
+ return
43
 
44
  uploaded_file = st.file_uploader("Choose a chest X-ray image (JPG, PNG)", type=["jpg", "jpeg", "png"])
45
 
 
48
  st.image(image, caption="Uploaded Image", use_column_width=True)
49
 
50
  with st.spinner("Analyzing image with Maira-2..."):
51
+ image_data = prepare_image(image)
52
+ try:
53
+ results = vqa_pipeline(
54
+ image=image_data, # Pass the image bytes
55
+ question="Analyze this chest X-ray image and provide detailed findings. Include any abnormalities, their locations, and potential diagnoses. Be as specific as possible.",
56
+ )
57
+
58
+ if results: # Handle results (list of dicts)
59
+ if isinstance(results, list) and len(results) > 0:
60
+ best_answer = max(results, key=lambda x: x.get('score', 0))
61
+ if 'answer' in best_answer:
62
+ st.subheader("Findings:")
63
+ st.write(best_answer['answer'])
64
+ else:
65
+ st.warning("Could not find 'answer' in results.")
66
+ else:
67
+ st.warning("Unexpected result format.")
68
+
69
+ except Exception as e:
70
+ st.error(f"An error occurred during analysis: {e}")
71
 
72
  else:
73
  st.write("Please upload an image.")
 
75
  st.write("---")
76
  st.write("Disclaimer: For informational purposes only. Not medical advice.")
77
 
78
+
79
  if __name__ == "__main__":
80
  main()