Built gradio app for the example.
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Gradio Implementation: Lenix Carter
|
2 |
+
# License: BSD 3-Clause or CC-0
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
from sklearn.neural_network import MLPClassifier
|
12 |
+
from sklearn.preprocessing import MinMaxScaler
|
13 |
+
from sklearn import datasets
|
14 |
+
from sklearn.exceptions import ConvergenceWarning
|
15 |
+
|
16 |
+
matplotlib.use('agg')
|
17 |
+
|
18 |
+
# different learning rate schedules and momentum parameters
|
19 |
+
params = [
|
20 |
+
{
|
21 |
+
"solver": "sgd",
|
22 |
+
"learning_rate": "constant",
|
23 |
+
"momentum": 0,
|
24 |
+
"learning_rate_init": 0.2,
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"solver": "sgd",
|
28 |
+
"learning_rate": "constant",
|
29 |
+
"momentum": 0.9,
|
30 |
+
"nesterovs_momentum": False,
|
31 |
+
"learning_rate_init": 0.2,
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"solver": "sgd",
|
35 |
+
"learning_rate": "constant",
|
36 |
+
"momentum": 0.9,
|
37 |
+
"nesterovs_momentum": True,
|
38 |
+
"learning_rate_init": 0.2,
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"solver": "sgd",
|
42 |
+
"learning_rate": "invscaling",
|
43 |
+
"momentum": 0,
|
44 |
+
"learning_rate_init": 0.2,
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"solver": "sgd",
|
48 |
+
"learning_rate": "invscaling",
|
49 |
+
"momentum": 0.9,
|
50 |
+
"nesterovs_momentum": True,
|
51 |
+
"learning_rate_init": 0.2,
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"solver": "sgd",
|
55 |
+
"learning_rate": "invscaling",
|
56 |
+
"momentum": 0.9,
|
57 |
+
"nesterovs_momentum": False,
|
58 |
+
"learning_rate_init": 0.2,
|
59 |
+
},
|
60 |
+
{"solver": "adam", "learning_rate_init": 0.01},
|
61 |
+
]
|
62 |
+
|
63 |
+
labels = [
|
64 |
+
"constant learning-rate",
|
65 |
+
"constant with momentum",
|
66 |
+
"constant with Nesterov's momentum",
|
67 |
+
"inv-scaling learning-rate",
|
68 |
+
"inv-scaling with momentum",
|
69 |
+
"inv-scaling with Nesterov's momentum",
|
70 |
+
"adam",
|
71 |
+
]
|
72 |
+
|
73 |
+
plot_args = [
|
74 |
+
{"c": "red", "linestyle": "-"},
|
75 |
+
{"c": "green", "linestyle": "-"},
|
76 |
+
{"c": "blue", "linestyle": "-"},
|
77 |
+
{"c": "red", "linestyle": "--"},
|
78 |
+
{"c": "green", "linestyle": "--"},
|
79 |
+
{"c": "blue", "linestyle": "--"},
|
80 |
+
{"c": "black", "linestyle": "-"},
|
81 |
+
]
|
82 |
+
|
83 |
+
# load / generate some toy datasets
|
84 |
+
iris = datasets.load_iris()
|
85 |
+
X_digits, y_digits = datasets.load_digits(return_X_y=True)
|
86 |
+
data_sets = [
|
87 |
+
(iris.data, iris.target),
|
88 |
+
(X_digits, y_digits),
|
89 |
+
datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
|
90 |
+
datasets.make_moons(noise=0.3, random_state=0),
|
91 |
+
]
|
92 |
+
|
93 |
+
def run_mlp(dataset, models, clr_lr,
|
94 |
+
cwm_lr, cwm_mom,
|
95 |
+
nest_lr, nest_mom,
|
96 |
+
inv_lr,
|
97 |
+
iwm_lr, iwm_mom,
|
98 |
+
invN_lr, invN_mom,
|
99 |
+
adam_lr):
|
100 |
+
plt.clf()
|
101 |
+
new_params = [
|
102 |
+
{"learning_rate_init": clr_lr},
|
103 |
+
{"learning_rate_init": cwm_lr,
|
104 |
+
"momentum": cwm_mom},
|
105 |
+
{"learning_rate_init": nest_lr,
|
106 |
+
"momentum": nest_mom},
|
107 |
+
{"learning_rate_init": inv_lr},
|
108 |
+
{"learning_rate_init": iwm_lr,
|
109 |
+
"momentum": iwm_mom},
|
110 |
+
{"learning_rate_init": invN_lr,
|
111 |
+
"momentum": invN_mom},
|
112 |
+
{"learning_rate_init": adam_lr}
|
113 |
+
]
|
114 |
+
for (param, new_param) in zip(params, new_params):
|
115 |
+
param.update(new_param)
|
116 |
+
|
117 |
+
iris = datasets.load_iris()
|
118 |
+
X_digits, y_digits = datasets.load_digits(return_X_y=True)
|
119 |
+
data_sets = [
|
120 |
+
(iris.data, iris.target),
|
121 |
+
(X_digits, y_digits),
|
122 |
+
datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
|
123 |
+
datasets.make_moons(noise=0.3, random_state=0),
|
124 |
+
]
|
125 |
+
name = ["Iris", "Digits", "Circles", "Moons"]
|
126 |
+
|
127 |
+
return plot_on_dataset(*data_sets[dataset], models, name[dataset])
|
128 |
+
|
129 |
+
def plot_on_dataset(X, y, models, name):
|
130 |
+
# for each dataset, plot learning for each learning strategy
|
131 |
+
print("\nlearning on dataset %s" % name)
|
132 |
+
|
133 |
+
X = MinMaxScaler().fit_transform(X)
|
134 |
+
mlps = []
|
135 |
+
if name == "Digits":
|
136 |
+
# digits is larger but converges fairly quickly
|
137 |
+
max_iter = 15
|
138 |
+
else:
|
139 |
+
max_iter = 400
|
140 |
+
|
141 |
+
for model in models:
|
142 |
+
label = labels[model]
|
143 |
+
param = params[model]
|
144 |
+
print("training: %s" % label)
|
145 |
+
mlp = MLPClassifier(random_state=0, max_iter=max_iter, **param)
|
146 |
+
|
147 |
+
# some parameter combinations will not converge as can be seen on the
|
148 |
+
# plots so they are ignored here
|
149 |
+
with warnings.catch_warnings():
|
150 |
+
warnings.filterwarnings(
|
151 |
+
"ignore", category=ConvergenceWarning, module="sklearn"
|
152 |
+
)
|
153 |
+
mlp.fit(X, y)
|
154 |
+
|
155 |
+
mlps.append(mlp)
|
156 |
+
print("Training set score: %f" % mlp.score(X, y))
|
157 |
+
print("Training set loss: %f" % mlp.loss_)
|
158 |
+
|
159 |
+
print(label)
|
160 |
+
plt.plot(mlp.loss_curve_, label=label, **plot_args[model])
|
161 |
+
|
162 |
+
plt.legend(loc="upper right")
|
163 |
+
|
164 |
+
return plt
|
165 |
+
|
166 |
+
title = "Compare Stochastic learning strategies for MLPClassifier"
|
167 |
+
with gr.Blocks() as demo:
|
168 |
+
gr.Markdown(f" # {title}")
|
169 |
+
gr.Markdown("""
|
170 |
+
This example demonstrates different stochastic learning strategies on the MLP Classifier. You may also tweak some parameters of the learning strategies.
|
171 |
+
|
172 |
+
This is based on the example [here](https://scikit-learn.org/stable/auto_examples/neural_networks/plot_mlp_training_curves.html#sphx-glr-auto-examples-neural-networks-plot-mlp-training-curves-py)
|
173 |
+
""")
|
174 |
+
with gr.Tabs():
|
175 |
+
with gr.TabItem("Model and Data Selection"):
|
176 |
+
with gr.Row():
|
177 |
+
dataset = gr.Dropdown(["Iris", "Digits", "Circles", "Moons"],
|
178 |
+
value="Iris",
|
179 |
+
type="index")
|
180 |
+
models = gr.CheckboxGroup(["Constant Learning-Rate",
|
181 |
+
"Constant with Momentum",
|
182 |
+
"Constant with Nesterov's Momentum",
|
183 |
+
"Inverse Scaling Learning-Rate",
|
184 |
+
"Inverse Scaling with Momentum",
|
185 |
+
"Inverse Scaling with Nesterov's Momentum",
|
186 |
+
"Adam"],
|
187 |
+
label="Stochastic Learning Strategy",
|
188 |
+
type="index")
|
189 |
+
with gr.TabItem("Model Tuning"):
|
190 |
+
with gr.Accordion("Constant Learning-Rate", open=False):
|
191 |
+
clr_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
192 |
+
with gr.Accordion("Constant with Momentum", open=False):
|
193 |
+
cwm_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
194 |
+
cwm_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
|
195 |
+
with gr.Accordion("Constant with Nesterov's Momentum", open=False):
|
196 |
+
nest_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
197 |
+
nest_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
|
198 |
+
with gr.Accordion("Inverse Scaling Learning-Rate", open=False):
|
199 |
+
inv_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
200 |
+
with gr.Accordion("Inverse Scaling with Momentum", open=False):
|
201 |
+
iwm_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
202 |
+
iwm_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
|
203 |
+
with gr.Accordion("Inverse Scaling with Nesterov's Momentum", open=False):
|
204 |
+
invN_lr = gr.Slider(0.01, 1.00, .2, label="Learning Rate")
|
205 |
+
invN_mom = gr.Slider(0.01, 1.00, 0.9, label="Momentum")
|
206 |
+
with gr.Accordion("Adam", open=False):
|
207 |
+
adam_lr = gr.Slider(0.001, 1.00, 0.01, label="Learning Rate")
|
208 |
+
|
209 |
+
btn = gr.Button(label="Run")
|
210 |
+
stoch_graph = gr.Plot(label="Stochastic Learning Strategies")
|
211 |
+
btn.click(
|
212 |
+
fn=run_mlp,
|
213 |
+
inputs=[dataset, models,
|
214 |
+
clr_lr,
|
215 |
+
cwm_lr,
|
216 |
+
cwm_mom,
|
217 |
+
nest_lr,
|
218 |
+
nest_mom,
|
219 |
+
inv_lr,
|
220 |
+
iwm_lr,
|
221 |
+
iwm_mom,
|
222 |
+
invN_lr,
|
223 |
+
invN_mom,
|
224 |
+
adam_lr],
|
225 |
+
outputs=[stoch_graph]
|
226 |
+
)
|
227 |
+
|
228 |
+
if __name__ == '__main__':
|
229 |
+
demo.launch()
|
230 |
+
|