Commit
·
e9735b2
1
Parent(s):
5cb8c11
Add application and requirements.txt
Browse files- app.py +266 -0
- requirements.text +2 -0
app.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
|
| 5 |
+
from sklearn.feature_selection import f_regression, mutual_info_regression
|
| 6 |
+
from functools import partial
|
| 7 |
+
|
| 8 |
+
def default(n_samples,
|
| 9 |
+
noise_var,
|
| 10 |
+
noise_bias,
|
| 11 |
+
feat2_freq,
|
| 12 |
+
feat1_scale,
|
| 13 |
+
feat1_power,
|
| 14 |
+
feat2_shift,
|
| 15 |
+
feat2_scale,
|
| 16 |
+
feat2_func,
|
| 17 |
+
counter,
|
| 18 |
+
func_name):
|
| 19 |
+
return train_models(
|
| 20 |
+
func_name,
|
| 21 |
+
counter,
|
| 22 |
+
n_samples= n_samples,
|
| 23 |
+
noise_var= noise_var,
|
| 24 |
+
noise_bias= noise_bias,
|
| 25 |
+
feat2_freq= feat2_freq,
|
| 26 |
+
feat1_scale= feat1_scale,
|
| 27 |
+
feat1_power= feat1_power,
|
| 28 |
+
feat2_shift= feat2_shift,
|
| 29 |
+
feat2_scale= feat2_scale,
|
| 30 |
+
feat2_func= feat2_func,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def gaussian(n_samples,
|
| 34 |
+
gaussian_center,
|
| 35 |
+
gaussian_width,
|
| 36 |
+
gaussian_scaling,
|
| 37 |
+
counter,
|
| 38 |
+
func_name):
|
| 39 |
+
return train_models(
|
| 40 |
+
func_name,
|
| 41 |
+
counter,
|
| 42 |
+
n_samples= n_samples,
|
| 43 |
+
gaussian_center= gaussian_center,
|
| 44 |
+
gaussian_width= gaussian_width,
|
| 45 |
+
gaussian_scaling= gaussian_scaling,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def piecewise(n_samples,
|
| 49 |
+
piecewise_thres,
|
| 50 |
+
piecewise_scale,
|
| 51 |
+
counter,
|
| 52 |
+
func_name):
|
| 53 |
+
return train_models(
|
| 54 |
+
func_name,
|
| 55 |
+
counter,
|
| 56 |
+
n_samples= n_samples,
|
| 57 |
+
piecewise_thres= piecewise_thres,
|
| 58 |
+
piecewise_scale= piecewise_scale,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def train_models(func_name, counter, **kwargs):
|
| 63 |
+
functions = dict()
|
| 64 |
+
|
| 65 |
+
if func_name == "default":
|
| 66 |
+
feat2_func_list = {
|
| 67 |
+
"Use sine function for feature 2": np.sin,
|
| 68 |
+
"Use cosine function for feature 2": np.cos,
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
functions.update({"feat2_func":feat2_func_list[kwargs["feat2_func"]]})
|
| 72 |
+
np.random.seed(0)
|
| 73 |
+
n_samples = kwargs["n_samples"]
|
| 74 |
+
X = np.random.rand(n_samples, 3)
|
| 75 |
+
|
| 76 |
+
if func_name == "piecewise":
|
| 77 |
+
mask = X[:, 1] < (kwargs["piecewise_thres"]*0.1)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
functions.update ({
|
| 81 |
+
"default":
|
| 82 |
+
lambda X: (kwargs["feat1_scale"]* X[:, 0] ** kwargs["feat1_power"] +
|
| 83 |
+
kwargs["feat2_scale"] * functions["feat2_func"](kwargs["feat2_freq"] * np.pi * X[:, 1] + kwargs["feat2_shift"]) +
|
| 84 |
+
(kwargs["noise_var"]*0.1) * np.random.randn(n_samples) + (kwargs["noise_bias"]*0.1)),
|
| 85 |
+
"Gaussian":
|
| 86 |
+
lambda X: (X[:, 0] + np.exp(-(X[:, 1] - (kwargs["gaussian_center"]*0.1))**2 / (2 * (kwargs["gaussian_width"]*0.1)**2)) +
|
| 87 |
+
(kwargs["gaussian_scaling"]*0.1) * np.random.randn(n_samples)),
|
| 88 |
+
"piecewise":
|
| 89 |
+
lambda X: (np.where(mask, kwargs["piecewise_scale"] * X[:, 0], kwargs["piecewise_scale"] * -X[:, 0]) +
|
| 90 |
+
0.1 * np.random.randn(n_samples))
|
| 91 |
+
})
|
| 92 |
+
|
| 93 |
+
y = functions[func_name](X)
|
| 94 |
+
f_test, _ = f_regression(X, y)
|
| 95 |
+
f_test /= np.max(f_test)
|
| 96 |
+
|
| 97 |
+
mi = mutual_info_regression(X, y)
|
| 98 |
+
mi /= np.max(mi)
|
| 99 |
+
|
| 100 |
+
fig, ax = plt.subplots()
|
| 101 |
+
|
| 102 |
+
i = counter
|
| 103 |
+
ax.scatter(X[:, i], y, edgecolor="black", s=20)
|
| 104 |
+
ax.set_xlabel("$x_{}$".format(i + 1), fontsize=14)
|
| 105 |
+
ax.set_ylabel("$y$", fontsize=14)
|
| 106 |
+
ax.set_title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=16)
|
| 107 |
+
|
| 108 |
+
return fig
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def iter_grid(n_rows, n_cols):
|
| 112 |
+
# create a grid using gradio Block
|
| 113 |
+
for _ in range(n_rows):
|
| 114 |
+
with gr.Row():
|
| 115 |
+
for _ in range(n_cols):
|
| 116 |
+
with gr.Column():
|
| 117 |
+
yield
|
| 118 |
+
def plot_func(input_model, args):
|
| 119 |
+
input_models = {"default": default,
|
| 120 |
+
"Gaussian": gaussian,
|
| 121 |
+
"piecewise": piecewise}
|
| 122 |
+
counter = 0
|
| 123 |
+
for _ in iter_grid(1,3):
|
| 124 |
+
fn = partial(input_models[input_model], counter=counter, func_name=input_model)
|
| 125 |
+
|
| 126 |
+
if counter >= len(input_models):
|
| 127 |
+
break
|
| 128 |
+
|
| 129 |
+
plot = gr.Plot(label=input_model)
|
| 130 |
+
|
| 131 |
+
n_samples.change(fn=fn, inputs=args, outputs=plot)
|
| 132 |
+
if input_model == "default":
|
| 133 |
+
noise_var.change(fn=fn, inputs=args, outputs=plot)
|
| 134 |
+
noise_bias.change(fn=fn, inputs=args, outputs=plot)
|
| 135 |
+
feat2_freq.change(fn=fn, inputs=args, outputs=plot)
|
| 136 |
+
feat1_scale.change(fn=fn, inputs=args, outputs=plot)
|
| 137 |
+
feat1_power.change(fn=fn, inputs=args, outputs=plot)
|
| 138 |
+
feat2_shift.change(fn=fn, inputs=args, outputs=plot)
|
| 139 |
+
feat2_scale.change(fn=fn, inputs=args, outputs=plot)
|
| 140 |
+
feat2_func.change(fn=fn, inputs=args, outputs=plot)
|
| 141 |
+
elif input_model == "Gaussian":
|
| 142 |
+
gaussian_center.change(fn=fn, inputs=args, outputs=plot)
|
| 143 |
+
gaussian_width.change(fn=fn, inputs=args, outputs=plot)
|
| 144 |
+
gaussian_scaling.change(fn=fn, inputs=args, outputs=plot)
|
| 145 |
+
elif input_model == "piecewise":
|
| 146 |
+
piecewise_thres.change(fn=fn, inputs=args, outputs=plot)
|
| 147 |
+
piecewise_scale.change(fn=fn, inputs=args, outputs=plot)
|
| 148 |
+
|
| 149 |
+
counter += 1
|
| 150 |
+
|
| 151 |
+
title = "Comparison of F-test and mutual information"
|
| 152 |
+
with gr.Blocks(title=title) as demo:
|
| 153 |
+
gr.Markdown(f"## {title}")
|
| 154 |
+
gr.Markdown("This example illustrates the differences between univariate \
|
| 155 |
+
F-test statistics and mutual information. \
|
| 156 |
+
The plots below show the dependency of `y` against individual `x_i` and normalized \
|
| 157 |
+
values of univariate F-tests statistics and mutual information.\
|
| 158 |
+
In general, the F-test evaluates linear dependencies and tends to prioritize \
|
| 159 |
+
features with linear relationships, while mutual information assesses any type \
|
| 160 |
+
of dependency between variables and tends to identify features with strong \
|
| 161 |
+
relationships. In these examples, the most discriminative features identified \
|
| 162 |
+
by each approach may vary.")
|
| 163 |
+
gr.Markdown("In the follwing examples, we introduce parameterization to enable interaction \
|
| 164 |
+
with various parameters of the equation.")
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
n_samples = gr.Slider(minimum=500, maximum=1500, value=1000, step=100,
|
| 168 |
+
label = "Number of Samples")
|
| 169 |
+
|
| 170 |
+
with gr.Tab("Default Example function"):
|
| 171 |
+
gr.Markdown("We consider 3 features `x_1`, `x_2`, `x_3` distributed uniformly over `[0, 1]`, \
|
| 172 |
+
the target depends on them as follows:")
|
| 173 |
+
gr.Markdown("- `y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1)`")
|
| 174 |
+
gr.Markdown("that is the third feature is completely irrelevant.")
|
| 175 |
+
|
| 176 |
+
gr.Markdown("Parametrized equation:")
|
| 177 |
+
gr.Markdown("`y = f1_scale * x_1 **f1_power + f2_scale * f2_func(f2_freq * np.pi * x_2 + f2_shift + variance) * random(samples) + bias`")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
noise_var = gr.Slider(minimum=0, maximum=10, step=1,
|
| 181 |
+
label = "Noise variance")
|
| 182 |
+
|
| 183 |
+
noise_bias = gr.Slider(minimum=0, maximum=10, step=1,
|
| 184 |
+
label = "Noise bias")
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
feat1_scale = gr.Slider(minimum=1, maximum=10, step=1,
|
| 189 |
+
label = "Scale feature 1")
|
| 190 |
+
|
| 191 |
+
feat1_power = gr.Slider(minimum=1, maximum=4, step=1,
|
| 192 |
+
label = "Raised feature 1 to the power")
|
| 193 |
+
|
| 194 |
+
with gr.Column():
|
| 195 |
+
feat2_freq = gr.Slider(minimum=1, maximum=10, step=1, value=6,
|
| 196 |
+
label = "Feature 2 frequency")
|
| 197 |
+
|
| 198 |
+
feat2_shift = gr.Slider(minimum=1, maximum=5, step=1,
|
| 199 |
+
label = "Shift feature 2")
|
| 200 |
+
|
| 201 |
+
feat2_scale = gr.Slider(minimum=1, maximum=4, step=1,
|
| 202 |
+
label = "Scale feature 2")
|
| 203 |
+
|
| 204 |
+
feat2_func = gr.Radio(choices=["Use sine function for feature 2",
|
| 205 |
+
"Use cosine function for feature 2"],
|
| 206 |
+
value="Use sine function for feature 2")
|
| 207 |
+
plot_func("default", [n_samples,
|
| 208 |
+
noise_var,
|
| 209 |
+
noise_bias,
|
| 210 |
+
feat2_freq,
|
| 211 |
+
feat1_scale,
|
| 212 |
+
feat1_power,
|
| 213 |
+
feat2_shift,
|
| 214 |
+
feat2_scale,
|
| 215 |
+
feat2_func,
|
| 216 |
+
])
|
| 217 |
+
|
| 218 |
+
with gr.Tab("Gaussian function"):
|
| 219 |
+
gr.Markdown("We consider 3 features `x_1`, `x_2`, `x_3` distributed uniformly over `[0, 1]`, \
|
| 220 |
+
the target depends on them as follows:")
|
| 221 |
+
gr.Markdown("- `y = x_1 + np.exp(-(x_2-0.5)**2 / (2 * 0.1**2)) + 0.1 * N(0, 1)`")
|
| 222 |
+
gr.Markdown("that is the third feature is completely irrelevant.")
|
| 223 |
+
|
| 224 |
+
gr.Markdown("Parametrized equation:")
|
| 225 |
+
gr.Markdown("`y = x_1 + exponential(-(x_2 - center)**2 / (2 * width)**2) + scaling * random(samples)`")
|
| 226 |
+
|
| 227 |
+
gaussian_center = gr.Slider(minimum=0, maximum=10, value=5, step=1,
|
| 228 |
+
label = "Gaussian center")
|
| 229 |
+
|
| 230 |
+
gaussian_width = gr.Slider(minimum=1, maximum=10, value=1, step=1,
|
| 231 |
+
label = "Gaussian width")
|
| 232 |
+
|
| 233 |
+
gaussian_scaling = gr.Slider(minimum=1, maximum=5, value=1, step=1,
|
| 234 |
+
label = "Gaussian scaling")
|
| 235 |
+
|
| 236 |
+
plot_func("Gaussian", [n_samples,
|
| 237 |
+
gaussian_center,
|
| 238 |
+
gaussian_width,
|
| 239 |
+
gaussian_scaling
|
| 240 |
+
])
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
with gr.Tab("Piecewise function"):
|
| 244 |
+
gr.Markdown("We consider 3 features `x_1`, `x_2`, `x_3` distributed uniformly over `[0, 1]`, \
|
| 245 |
+
the target depends on them as follows:")
|
| 246 |
+
gr.Markdown("- `mask = x_2 < 0.5`")
|
| 247 |
+
gr.Markdown("- `y = x_1` if `mask` is True")
|
| 248 |
+
gr.Markdown("- `y = -x_1` if `mask` is True")
|
| 249 |
+
gr.Markdown("that is the third feature is completely irrelevant.")
|
| 250 |
+
|
| 251 |
+
gr.Markdown("Parametrized equation:")
|
| 252 |
+
gr.Markdown("- `mask = x_2 < threshold`")
|
| 253 |
+
gr.Markdown("- `y = scaling*x_1` if `mask` is True")
|
| 254 |
+
gr.Markdown("- `y = scaling*-x_1` if `mask` is True")
|
| 255 |
+
piecewise_thres = gr.Slider(minimum=1, maximum=10, value=5, step=1,
|
| 256 |
+
label = "Piecewise threshold")
|
| 257 |
+
|
| 258 |
+
piecewise_scale = gr.Slider(minimum=1, maximum=10, value=1, step=1,
|
| 259 |
+
label = "Piecewise scaling")
|
| 260 |
+
|
| 261 |
+
plot_func("piecewise", [n_samples, piecewise_thres,
|
| 262 |
+
piecewise_scale
|
| 263 |
+
])
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
demo.launch()
|
requirements.text
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
matplotlib
|