File size: 7,638 Bytes
91cbc46 96b98f3 91cbc46 e252d2c 43728f4 80a6e34 96b98f3 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 96b98f3 80a6e34 96b98f3 91cbc46 43728f4 96b98f3 43728f4 91cbc46 80a6e34 96b98f3 80a6e34 43728f4 80a6e34 e252d2c 80a6e34 e252d2c 80a6e34 91cbc46 e252d2c 91cbc46 e252d2c 91cbc46 80a6e34 91cbc46 80a6e34 96b98f3 91cbc46 edfc8c7 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 edfc8c7 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 91cbc46 80a6e34 edfc8c7 91cbc46 80a6e34 91cbc46 80a6e34 96b98f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# app.py
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from datasets import load_dataset
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
# In some remote environments, Matplotlib needs to be set to 'Agg' backend
matplotlib.use('Agg')
################################################################################
# SUGGESTED_DATASETS: Must actually exist on huggingface.co/datasets.
#
# "scikit-learn/iris" -> a tabular Iris dataset with a "train" split of 150 rows.
# "uci/wine" -> a tabular Wine dataset with a "train" split of 178 rows.
################################################################################
SUGGESTED_DATASETS = [
"scikit-learn/iris",
"uci/wine",
"SKIP/ENTER_CUSTOM" # a placeholder meaning "use custom_dataset_id"
]
def update_columns(dataset_id, custom_dataset_id):
"""
Loads the chosen dataset (train split) and returns its column names,
to populate the Label Column & Feature Columns selectors.
"""
# If user picked a suggested dataset (not SKIP), use that
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
else:
# Use the user-supplied dataset ID
final_id = custom_dataset_id.strip()
try:
# Load just the "train" split; many HF datasets have train/test/validation
ds = load_dataset(final_id, split="train")
df = pd.DataFrame(ds)
cols = df.columns.tolist()
message = f"**Loaded dataset**: {final_id}\n\n**Columns found**: {cols}"
# Return list of columns for both label & features
return (
gr.update(choices=cols, value=None), # label_col dropdown
gr.update(choices=cols, value=[]), # feature_cols checkbox group
message
)
except Exception as e:
# If load fails or dataset doesn't exist
err_msg = f"**Error loading** `{final_id}`: {e}"
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
err_msg
)
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
learning_rate, n_estimators, max_depth, test_size):
"""
1. Determine the final dataset ID (from dropdown or custom text).
2. Load the dataset -> create dataframe -> X, y.
3. Train GradientBoostingClassifier.
4. Return metrics (accuracy) and a Matplotlib figure with:
- Feature importance bar chart
- Confusion matrix heatmap
"""
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
else:
final_id = custom_dataset_id.strip()
# Load dataset
ds = load_dataset(final_id, split="train")
df = pd.DataFrame(ds)
# Basic validation
if label_column not in df.columns:
raise ValueError(f"Label column '{label_column}' not found in dataset columns.")
for fc in feature_columns:
if fc not in df.columns:
raise ValueError(f"Feature column '{fc}' not found in dataset columns.")
# Build X, y arrays
X = df[feature_columns].values
y = df[label_column].values
# Split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=42
)
# Train model
clf = GradientBoostingClassifier(
learning_rate=learning_rate,
n_estimators=int(n_estimators),
max_depth=int(max_depth),
random_state=42
)
clf.fit(X_train, y_train)
# Predictions & metrics
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
# Build a single figure with 2 subplots:
# 1) Feature importances
# 2) Confusion matrix heatmap
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
# Subplot 1: Feature Importances
importances = clf.feature_importances_
axs[0].barh(range(len(feature_columns)), importances, color='skyblue')
axs[0].set_yticks(range(len(feature_columns)))
axs[0].set_yticklabels(feature_columns)
axs[0].set_xlabel("Importance")
axs[0].set_title("Feature Importances")
# Subplot 2: Confusion Matrix Heatmap
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
axs[1].set_title("Confusion Matrix")
plt.colorbar(im, ax=axs[1])
axs[1].set_xlabel("Predicted")
axs[1].set_ylabel("True")
# Optionally annotate each cell with the count
thresh = cm.max() / 2.0
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
color = "white" if cm[i, j] > thresh else "black"
axs[1].text(j, i, str(cm[i, j]), ha="center", va="center", color=color)
plt.tight_layout()
# Build textual summary
text_summary = (
f"**Dataset used**: `{final_id}`\n\n"
f"**Label column**: `{label_column}`\n\n"
f"**Feature columns**: `{feature_columns}`\n\n"
f"**Accuracy**: {accuracy:.3f}\n\n"
)
return text_summary, fig
# Build the Gradio Blocks UI
with gr.Blocks() as demo:
gr.Markdown("# Train a GradientBoostingClassifier on any HF Dataset\n")
gr.Markdown(
"1. Choose a suggested dataset from the dropdown **or** enter a custom dataset ID in the format `user/dataset`.\n"
"2. Click **Load Columns** to inspect the columns.\n"
"3. Pick a **Label column** and **Feature columns**.\n"
"4. Adjust hyperparameters and click **Train & Evaluate**.\n"
"5. Observe accuracy, feature importances, and a confusion matrix heatmap.\n\n"
"*(Note: the dataset must have a `train` split!)*"
)
# Row 1: Dataset selection
with gr.Row():
dataset_dropdown = gr.Dropdown(
label="Choose suggested dataset",
choices=SUGGESTED_DATASETS,
value=SUGGESTED_DATASETS[0] # default
)
custom_dataset_id = gr.Textbox(
label="Or enter a custom dataset ID",
placeholder="e.g. username/my_custom_dataset"
)
load_cols_btn = gr.Button("Load Columns")
load_cols_info = gr.Markdown()
# Row 2: label & feature columns
with gr.Row():
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
# Hyperparameters
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
test_size_slider = gr.Slider(0.1, 0.9, value=0.3, step=0.1, label="test_size fraction (0.1-0.9)")
train_button = gr.Button("Train & Evaluate")
output_text = gr.Markdown()
output_plot = gr.Plot()
# Link the "Load Columns" button -> update_columns function
load_cols_btn.click(
fn=update_columns,
inputs=[dataset_dropdown, custom_dataset_id],
outputs=[label_col, feature_cols, load_cols_info],
)
# Link "Train & Evaluate" -> train_model function
train_button.click(
fn=train_model,
inputs=[
dataset_dropdown,
custom_dataset_id,
label_col,
feature_cols,
learning_rate_slider,
n_estimators_slider,
max_depth_slider,
test_size_slider
],
outputs=[output_text, output_plot],
)
demo.launch()
|