Commit
Β·
303f2f6
1
Parent(s):
55f8ab7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.ensemble import IsolationForest
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
|
11 |
+
#Data preparation
|
12 |
+
n_samples, n_outliers = 120, 40
|
13 |
+
rng = np.random.RandomState(0)
|
14 |
+
covariance = np.array([[0.5, -0.1], [0.7, 0.4]])
|
15 |
+
cluster_1 = 0.4 * rng.randn(n_samples, 2) @ covariance + np.array([2, 2]) # general deformed cluster
|
16 |
+
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2]) # spherical cluster
|
17 |
+
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
|
18 |
+
|
19 |
+
X = np.concatenate([cluster_1, cluster_2, outliers]) #120+120+40 = 280 with 2D
|
20 |
+
y = np.concatenate(
|
21 |
+
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
|
22 |
+
)
|
23 |
+
|
24 |
+
#Visualize the data as a scatter plot
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# def predict_survival(passenger_class, is_male, age, company, fare, embark_point):
|
29 |
+
# if passenger_class is None or embark_point is None:
|
30 |
+
# return None
|
31 |
+
# df = pd.DataFrame.from_dict(
|
32 |
+
# {
|
33 |
+
# "Pclass": [passenger_class + 1],
|
34 |
+
# "Sex": [0 if is_male else 1],
|
35 |
+
# "Age": [age],
|
36 |
+
# "Fare": [fare],
|
37 |
+
# "Embarked": [embark_point + 1],
|
38 |
+
# "Company": [
|
39 |
+
# (1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
|
40 |
+
# ]
|
41 |
+
# }
|
42 |
+
# )
|
43 |
+
# df = encode_age(df)
|
44 |
+
# df = encode_fare(df)
|
45 |
+
# pred = clf.predict_proba(df)[0]
|
46 |
+
# return {"Perishes": float(pred[0]), "Survives": float(pred[1])}
|
47 |
+
|
48 |
+
|
49 |
+
# demo = gr.Interface(
|
50 |
+
# predict_survival,
|
51 |
+
# [
|
52 |
+
# gr.Dropdown(["first", "second", "third"], type="index"),
|
53 |
+
# "checkbox",
|
54 |
+
# gr.Slider(0, 80, value=25),
|
55 |
+
# gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"),
|
56 |
+
# gr.Number(value=20),
|
57 |
+
# gr.Radio(["S", "C", "Q"], type="index"),
|
58 |
+
# ],
|
59 |
+
# "label",
|
60 |
+
# examples=[
|
61 |
+
# ["first", True, 30, [], 50, "S"],
|
62 |
+
# ["second", False, 40, ["Sibling", "Child"], 10, "Q"],
|
63 |
+
# ["third", True, 30, ["Child"], 20, "S"],
|
64 |
+
# ],
|
65 |
+
# interpretation="default",
|
66 |
+
# live=True,
|
67 |
+
# )
|
68 |
+
|
69 |
+
# if __name__ == "__main__":
|
70 |
+
# demo.launch()
|