Commit
Β·
64eb9a6
1
Parent(s):
96f4763
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,9 @@ import numpy as np
|
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
import gradio as gr
|
9 |
import matplotlib.pyplot as plt
|
10 |
-
import
|
|
|
|
|
11 |
|
12 |
|
13 |
#Data preparation
|
@@ -35,6 +37,37 @@ def visualize_input_data():
|
|
35 |
# plt.show()
|
36 |
return fig
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
title = " An example using IsolationForest for anomaly detection."
|
39 |
|
40 |
with gr.Blocks(title=title) as demo:
|
@@ -47,8 +80,23 @@ with gr.Blocks(title=title) as demo:
|
|
47 |
|
48 |
btn = gr.Button(value="Visualize input dataset")
|
49 |
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
gr.Markdown( f"##
|
54 |
demo.launch()
|
|
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
import gradio as gr
|
9 |
import matplotlib.pyplot as plt
|
10 |
+
from skops import hub_utils
|
11 |
+
import pickle
|
12 |
+
|
13 |
|
14 |
|
15 |
#Data preparation
|
|
|
37 |
# plt.show()
|
38 |
return fig
|
39 |
|
40 |
+
def download_model_skops():
|
41 |
+
repo_id="sklearn-docs/anomaly-detection"
|
42 |
+
download_repo = "downloaded-model"
|
43 |
+
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
44 |
+
# repo_copy = mkdtemp(prefix="skops")
|
45 |
+
# hub_utils.download(repo_id=repo_id, dst=repo_copy, token=token)
|
46 |
+
# print(os.listdir(download_repo))
|
47 |
+
|
48 |
+
|
49 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
50 |
+
|
51 |
+
def plot_decision_boundary(classifier):
|
52 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
53 |
+
classifier,
|
54 |
+
X,
|
55 |
+
response_method="predict",
|
56 |
+
alpha=0.5,
|
57 |
+
)
|
58 |
+
fig = plt.figure(1, facecolor="w", figsize=(5, 5))
|
59 |
+
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
60 |
+
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
|
61 |
+
handles, labels = scatter.legend_elements()
|
62 |
+
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
|
63 |
+
plt.axis("square")
|
64 |
+
|
65 |
+
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
|
66 |
+
# plt.savefig('decision_boundary.png',dpi=300, bbox_inches = "tight")
|
67 |
+
return fig
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
title = " An example using IsolationForest for anomaly detection."
|
72 |
|
73 |
with gr.Blocks(title=title) as demo:
|
|
|
80 |
|
81 |
btn = gr.Button(value="Visualize input dataset")
|
82 |
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
|
83 |
+
# download
|
84 |
+
repo_id="sklearn-docs/anomaly-detection"
|
85 |
+
download_repo = "downloaded-model"
|
86 |
+
hub_utils.download(repo_id=repo_id, dst=download_repo)
|
87 |
+
if os.listdir(download_repo):
|
88 |
+
# hub_utils.download(repo_id=repo_id, dst=download_repo)
|
89 |
+
|
90 |
|
91 |
+
|
92 |
+
|
93 |
+
# print("Empty directory")
|
94 |
+
|
95 |
+
# print(os.listdir(download_repo))
|
96 |
+
loaded_model = pickle.load(open('isolation_forest.pkl', 'rb'))
|
97 |
+
btn = gr.Button(value="Plot decision boundary")
|
98 |
+
btn.click(plot_decision_boundary, inputs=[loaded_model], outputs= gr.Plot(label='Visualizing input dataset') )
|
99 |
+
|
100 |
|
101 |
+
gr.Markdown( f"## Success")
|
102 |
demo.launch()
|