Spaces:
Runtime error
Runtime error
from math import e | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.collections import LineCollection | |
from sklearn.linear_model import LinearRegression | |
from sklearn.isotonic import IsotonicRegression | |
from sklearn.utils import check_random_state | |
def visualize_isotonic_regression(n, random_range_min, random_range_max, out_of_bounds): | |
if random_range_min >= random_range_max: | |
raise ValueError("Random Value Range (Min) must be less than Random Value Range (Max)") | |
x = np.arange(n) | |
rs = check_random_state(0) | |
y = rs.randint(random_range_min, random_range_max, size=(n,)) + 50.0 * np.log1p(np.arange(n)) | |
ir = IsotonicRegression(out_of_bounds=out_of_bounds if out_of_bounds else "clip") | |
y_ = ir.fit_transform(x, y) | |
lr = LinearRegression() | |
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression | |
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] | |
lc = LineCollection(segments, zorder=0) | |
lc.set_array(np.ones(len(y))) | |
lc.set_linewidths(np.full(n, 0.5)) | |
fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(12, 6)) | |
ax0.plot(x, y, "C0.", markersize=12) | |
ax0.plot(x, y_, "C1.-", markersize=12) | |
ax0.plot(x, lr.predict(x[:, np.newaxis]), "C2-") | |
ax0.add_collection(lc) | |
ax0.legend(("Training data", "Isotonic fit", "Linear fit"), loc="lower right") | |
ax0.set_title("Isotonic regression fit on noisy data (n=%d)" % n) | |
x_test = np.linspace(np.min(x), np.max(x), 1000) # Update test values range | |
ax1.plot(x_test, ir.predict(x_test), "C1-") | |
ax1.plot(ir.X_thresholds_, ir.y_thresholds_, "C1.", markersize=12) | |
ax1.set_title("Prediction function (%d thresholds)" % len(ir.X_thresholds_)) | |
return fig | |
parameters = [ | |
gr.inputs.Slider(10, 100, step=10, default=50, label="Number of data points (n)"), | |
gr.inputs.Slider(-50, 50, step=1, default=-50, label="Random Value Range (Min)"), | |
gr.inputs.Slider(-50, 50, step=1, default=50, label="Random Value Range (Max)"), | |
gr.inputs.Radio(["clip", "nan", "raise"], default="clip", label="Out of Bounds Strategy"), | |
# gr.inputs.Dropdown(["clip", "nan", "raise"], default="clip", label="Out of Bounds Strategy"), | |
] | |
description = "This app presents an illustration of the isotonic regression on generated data (non-linear monotonic trend with homoscedastic uniform noise). The isotonic regression algorithm finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a non-parametric model is that it does not assume any shape for the target function besides monotonicity. For comparison a linear regression is also presented. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_isotonic_regression.html" | |
examples = [ | |
[50, -30, 30, "clip"], | |
[30, -20, 40, "nan"], | |
[70, -10, 20, "raise"], | |
] | |
iface = gr.Interface(fn=visualize_isotonic_regression, inputs=parameters, outputs="plot", title="Isotonic Regression Visualization", description=description, examples=examples, live=True) | |
iface.launch() | |