Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -78,7 +78,7 @@ def visualize_input_data():
|
|
78 |
|
79 |
return fig
|
80 |
|
81 |
-
title = "
|
82 |
|
83 |
import gradio as gr
|
84 |
import matplotlib.pyplot as plt
|
@@ -166,7 +166,7 @@ with gr.Blocks(title=title) as demo:
|
|
166 |
gr.Markdown(f"# {title}")
|
167 |
gr.Markdown(
|
168 |
"""
|
169 |
-
|
170 |
This method in statistics is useful because they dont require a hold out set test set(cross validation set).
|
171 |
|
172 |
AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
|
@@ -184,7 +184,7 @@ with gr.Blocks(title=title) as demo:
|
|
184 |
|
185 |
|
186 |
|
187 |
-
gr.Markdown("
|
188 |
|
189 |
##process
|
190 |
X,y = load_dataset()
|
|
|
78 |
|
79 |
return fig
|
80 |
|
81 |
+
title = "Lasso model selection via information criteria"
|
82 |
|
83 |
import gradio as gr
|
84 |
import matplotlib.pyplot as plt
|
|
|
166 |
gr.Markdown(f"# {title}")
|
167 |
gr.Markdown(
|
168 |
"""
|
169 |
+
Probabilistic model selection using Information Criterion.
|
170 |
This method in statistics is useful because they dont require a hold out set test set(cross validation set).
|
171 |
|
172 |
AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
|
|
|
184 |
|
185 |
|
186 |
|
187 |
+
gr.Markdown("See original example [here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py).")
|
188 |
|
189 |
##process
|
190 |
X,y = load_dataset()
|