merve HF staff commited on
Commit
f299743
·
1 Parent(s): 3234b71

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -78,7 +78,7 @@ def visualize_input_data():
78
 
79
  return fig
80
 
81
- title = " Lasso model selection via information criteria"
82
 
83
  import gradio as gr
84
  import matplotlib.pyplot as plt
@@ -166,7 +166,7 @@ with gr.Blocks(title=title) as demo:
166
  gr.Markdown(f"# {title}")
167
  gr.Markdown(
168
  """
169
- # Probabilistic model selection using Information Criterion.
170
  This method in statistics is useful because they dont require a hold out set test set(cross validation set).
171
 
172
  AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
@@ -184,7 +184,7 @@ with gr.Blocks(title=title) as demo:
184
 
185
 
186
 
187
- gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py**")
188
 
189
  ##process
190
  X,y = load_dataset()
 
78
 
79
  return fig
80
 
81
+ title = "Lasso model selection via information criteria"
82
 
83
  import gradio as gr
84
  import matplotlib.pyplot as plt
 
166
  gr.Markdown(f"# {title}")
167
  gr.Markdown(
168
  """
169
+ Probabilistic model selection using Information Criterion.
170
  This method in statistics is useful because they dont require a hold out set test set(cross validation set).
171
 
172
  AIC and BIC are two ways of scoring a model based on its log-likelihood and complexity.
 
184
 
185
 
186
 
187
+ gr.Markdown("See original example [here](https://scikit-learn.org/stable/auto_examples/linear_model/plot_lasso_lars_ic.html#sphx-glr-auto-examples-linear-model-plot-lasso-lars-ic-py).")
188
 
189
  ##process
190
  X,y = load_dataset()