Jayabalambika commited on
Commit
cbda4c5
·
1 Parent(s): 4a03ee9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -26
app.py CHANGED
@@ -10,31 +10,6 @@ np.random.seed(0)
10
 
11
 
12
 
13
- def generate_plots(min_slider_samples_range,max_slider_samples_range):
14
- # print("slider_samples_range:",slider_samples_range)
15
- slider_samples_range =np.arange(min_slider_samples_range,max_slider_samples_range,1)
16
- n_features = 100
17
- repeat = 100
18
- lw_mse = np.zeros((slider_samples_range.size, repeat))
19
- oa_mse = np.zeros((slider_samples_range.size, repeat))
20
- lw_shrinkage = np.zeros((slider_samples_range.size, repeat))
21
- oa_shrinkage = np.zeros((slider_samples_range.size, repeat))
22
-
23
-
24
- for i, n_samples in enumerate(slider_samples_range):
25
- for j in range(repeat):
26
- X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)
27
-
28
- lw = LedoitWolf(store_precision=False, assume_centered=True)
29
- lw.fit(X)
30
- lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
31
- lw_shrinkage[i, j] = lw.shrinkage_
32
-
33
- oa = OAS(store_precision=False, assume_centered=True)
34
- oa.fit(X)
35
- oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
36
- oa_shrinkage[i, j] = oa.shrinkage_
37
- return
38
 
39
 
40
 
@@ -133,7 +108,31 @@ with gr.Blocks(title=title, theme=gr.themes.Default(font=[gr.themes.GoogleFont("
133
  # output = gr.Textbox(label="Output Box")
134
  # greet_btn.click(fn=greet, inputs=name, outputs=output)
135
  gr.Label(value="Comparison of Covariance Estimators")
136
- generate_plots()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  #if min_slider_samples_range:
138
 
139
  min_slider_samples_range.change(plot_mse, outputs= gr.Plot() )
 
10
 
11
 
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
 
15
 
 
108
  # output = gr.Textbox(label="Output Box")
109
  # greet_btn.click(fn=greet, inputs=name, outputs=output)
110
  gr.Label(value="Comparison of Covariance Estimators")
111
+ # generate_plots()
112
+ # print("slider_samples_range:",slider_samples_range)
113
+ slider_samples_range =np.arange(min_slider_samples_range,max_slider_samples_range,1)
114
+ n_features = 100
115
+ repeat = 100
116
+ lw_mse = np.zeros((slider_samples_range.size, repeat))
117
+ oa_mse = np.zeros((slider_samples_range.size, repeat))
118
+ lw_shrinkage = np.zeros((slider_samples_range.size, repeat))
119
+ oa_shrinkage = np.zeros((slider_samples_range.size, repeat))
120
+
121
+
122
+ for i, n_samples in enumerate(slider_samples_range):
123
+ for j in range(repeat):
124
+
125
+ X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)
126
+
127
+ lw = LedoitWolf(store_precision=False, assume_centered=True)
128
+ lw.fit(X)
129
+ lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
130
+ lw_shrinkage[i, j] = lw.shrinkage_
131
+
132
+ oa = OAS(store_precision=False, assume_centered=True)
133
+ oa.fit(X)
134
+ oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
135
+ oa_shrinkage[i, j] = oa.shrinkage_
136
  #if min_slider_samples_range:
137
 
138
  min_slider_samples_range.change(plot_mse, outputs= gr.Plot() )