Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.model_selection import KFold | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import log_loss | |
from scipy.special import expit | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
) | |
model_card = f""" | |
## Description | |
The **Out-of-bag (OOB)** method is a useful technique for estimating the optimal number of boosting iterations. | |
This method is similar to cross-validation, but it does not require repeated model fitting and can be computed on-the-fly. | |
**OOB** estimates are only applicable to Stochastic Gradient Boosting (i.e., subsample < 1.0). They are calculated from the improvement in loss based on examples not included in the bootstrap sample (i.e., out-of-bag examples). | |
The **OOB** estimator provides a conservative estimate of the true test loss but is still a reasonable approximation for a small number of trees. | |
In this demonstration, a **GradientBoostingClassifier** model is trained on a simulation dataset, and the loss of the training set, test set, and OOB set are displayed in the figure. | |
This information allows you to determine the level of generalization of your trained model on the simulation dataset. | |
You can play around with ``number of samples``,``number of splits fold``, ``random seed``and ``number of estimation step`` | |
## Dataset | |
Simulation data | |
""" | |
def do_train(n_samples, n_splits, random_seed, n_estimators): | |
# Generate data (adapted from G. Ridgeway's gbm example) | |
random_state = np.random.RandomState(random_seed) | |
x1 = random_state.uniform(size=n_samples) | |
x2 = random_state.uniform(size=n_samples) | |
x3 = random_state.randint(0, 4, size=n_samples) | |
p = expit(np.sin(3 * x1) - 4 * x2 + x3) | |
y = random_state.binomial(1, p, size=n_samples) | |
X = np.c_[x1, x2, x3] | |
X = X.astype(np.float32) | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=random_seed) | |
# Fit classifier with out-of-bag estimates | |
params = { | |
"n_estimators": n_estimators, | |
"max_depth": 3, | |
"subsample": 0.5, | |
"learning_rate": 0.01, | |
"min_samples_leaf": 1, | |
"random_state": random_seed, | |
} | |
clf = GradientBoostingClassifier(**params) | |
clf.fit(X_train, y_train) | |
train_acc = clf.score(X_train, y_train) | |
test_acc = clf.score(X_test, y_test) | |
text = f"Train set accuracy: {train_acc*100:.2f}%. Test set accuracy: {test_acc*100:.2f}%" | |
n_estimators = params["n_estimators"] | |
x = np.arange(n_estimators) + 1 | |
def heldout_score(clf, X_test, y_test): | |
"""compute deviance scores on ``X_test`` and ``y_test``.""" | |
score = np.zeros((n_estimators,), dtype=np.float64) | |
for i, y_proba in enumerate(clf.staged_predict_proba(X_test)): | |
score[i] = 2 * log_loss(y_test, y_proba[:, 1]) | |
return score | |
def cv_estimate(n_splits): | |
cv = KFold(n_splits=n_splits) | |
cv_clf = GradientBoostingClassifier(**params) | |
val_scores = np.zeros((n_estimators,), dtype=np.float64) | |
for train, test in cv.split(X_train, y_train): | |
cv_clf.fit(X_train[train], y_train[train]) | |
val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) | |
val_scores /= n_splits | |
return val_scores | |
# Estimate best n_splits using cross-validation | |
cv_score = cv_estimate(n_splits) | |
# Compute best n_splits for test data | |
test_score = heldout_score(clf, X_test, y_test) | |
# negative cumulative sum of oob improvements | |
cumsum = -np.cumsum(clf.oob_improvement_) | |
# min loss according to OOB | |
oob_best_iter = x[np.argmin(cumsum)] | |
# min loss according to test (normalize such that first loss is 0) | |
test_score -= test_score[0] | |
test_best_iter = x[np.argmin(test_score)] | |
# min loss according to cv (normalize such that first loss is 0) | |
cv_score -= cv_score[0] | |
cv_best_iter = x[np.argmin(cv_score)] | |
# color brew for the three curves | |
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) | |
test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) | |
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) | |
# line type for the three curves | |
oob_line = "dashed" | |
test_line = "solid" | |
cv_line = "dashdot" | |
# plot curves and vertical lines for best iterations | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
ax.plot(x, cumsum, label="OOB loss", color=oob_color, linestyle=oob_line) | |
ax.plot(x, test_score, label="Test loss", color=test_color, linestyle=test_line) | |
ax.plot(x, cv_score, label="CV loss", color=cv_color, linestyle=cv_line) | |
ax.axvline(x=oob_best_iter, color=oob_color, linestyle=oob_line) | |
ax.axvline(x=test_best_iter, color=test_color, linestyle=test_line) | |
ax.axvline(x=cv_best_iter, color=cv_color, linestyle=cv_line) | |
# add three vertical lines to xticks | |
xticks = plt.xticks() | |
xticks_pos = np.array( | |
xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter] | |
) | |
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ["OOB", "CV", "Test"]) | |
ind = np.argsort(xticks_pos) | |
xticks_pos = xticks_pos[ind] | |
xticks_label = xticks_label[ind] | |
ax.set_xticks(xticks_pos, xticks_label, rotation=90) | |
ax.legend(loc="upper center") | |
ax.set_ylabel("normalized loss") | |
ax.set_xlabel("number of iterations") | |
return fig, text | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Gradient Boosting Out-of-Bag estimates</h1> | |
</div> | |
''') | |
gr.Markdown(model_card) | |
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-oob-py\">scikit-learn</a>") | |
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples") | |
n_splits = gr.Slider(minimum=2, maximum=10, step=1, value=3, label="Number of cross validation folds") | |
random_seed = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random seed") | |
n_estimators = gr.Slider(minimum=500, maximum=2000, step=100, value=500, label="Number of step") | |
with gr.Row(): | |
with gr.Column(): | |
plot = gr.Plot() | |
with gr.Column(): | |
result = gr.Textbox(label="Resusts") | |
n_samples.change(fn=do_train, inputs=[n_samples, n_splits, random_seed, n_estimators], outputs=[plot, result]) | |
n_splits.change(fn=do_train, inputs=[n_samples, n_splits, random_seed, n_estimators], outputs=[plot, result]) | |
random_seed.change(fn=do_train, inputs=[n_samples, n_splits, random_seed, n_estimators], outputs=[plot, result]) | |
n_estimators.change(fn=do_train, inputs=[n_samples, n_splits, random_seed, n_estimators], outputs=[plot, result]) | |
demo.launch() |