Spaces:
Sleeping
Sleeping
Commit
·
3be65ae
1
Parent(s):
63a3fbe
utilities
Browse files
utils.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
from sklearn.metrics import PrecisionRecallDisplay, precision_recall_curve, average_precision_score
|
4 |
+
|
5 |
+
def plot_multi_label_pr_curve(clf, X_test: np.ndarray, Y_test: np.ndarray):
|
6 |
+
n_classes = Y_test.shape[1]
|
7 |
+
y_score = clf.decision_function(X_test)
|
8 |
+
|
9 |
+
# For each class
|
10 |
+
precision = dict()
|
11 |
+
recall = dict()
|
12 |
+
average_precision = dict()
|
13 |
+
for i in range(n_classes):
|
14 |
+
precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i], y_score[:, i])
|
15 |
+
average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i])
|
16 |
+
|
17 |
+
# A "micro-average": quantifying score on all classes jointly
|
18 |
+
precision["micro"], recall["micro"], _ = precision_recall_curve(
|
19 |
+
Y_test.ravel(), y_score.ravel()
|
20 |
+
)
|
21 |
+
average_precision["micro"] = average_precision_score(Y_test, y_score, average="micro")
|
22 |
+
|
23 |
+
# Plotting
|
24 |
+
fig = go.Figure()
|
25 |
+
|
26 |
+
|
27 |
+
# Plottin Precision-Recall Curves for each class
|
28 |
+
colors = ["navy", "turquoise", "darkorange", "gold"]
|
29 |
+
keys = list(precision.keys())
|
30 |
+
|
31 |
+
for color, key in zip(colors, keys):
|
32 |
+
if key=="micro":
|
33 |
+
name = f"Micro-average Precision-Recall (AP={average_precision[key]:.2f})"
|
34 |
+
else:
|
35 |
+
name = f"Precision-recall for class {key} (AP={average_precision[key]:.2f})"
|
36 |
+
fig.add_trace(
|
37 |
+
go.Scatter(
|
38 |
+
x=recall[key],
|
39 |
+
y=precision[key],
|
40 |
+
mode="lines",
|
41 |
+
name=name,
|
42 |
+
line=dict(color=color),
|
43 |
+
showlegend=True,
|
44 |
+
line_shape="hv"
|
45 |
+
)
|
46 |
+
)
|
47 |
+
|
48 |
+
# Creating Iso-F1 Curves
|
49 |
+
f_scores = np.linspace(0.2, 0.8, num=4)
|
50 |
+
for idx, f_score in enumerate(f_scores):
|
51 |
+
if idx==0:
|
52 |
+
name = "Iso-F1 Curves"
|
53 |
+
showlegend = True
|
54 |
+
else:
|
55 |
+
name = ""
|
56 |
+
showlegend = False
|
57 |
+
x = np.linspace(0.01, 1, 1001)
|
58 |
+
y = f_score * x / (2 * x - f_score)
|
59 |
+
mask = y >= 0
|
60 |
+
fig.add_trace(go.Scatter(x=x[mask], y=y[mask], mode='lines', line_color='gray', name=name, showlegend=showlegend))
|
61 |
+
fig.add_annotation(x=0.9, y=y[900] + 0.02, text=f"<b>f1={f_score:0.1f}</b>", showarrow=False, font=dict(size=15))
|
62 |
+
|
63 |
+
|
64 |
+
fig.update_yaxes(range=[0, 1.05])
|
65 |
+
|
66 |
+
fig.update_layout(
|
67 |
+
title='Extension of Precision-Recall Curve to Multi-Class',
|
68 |
+
xaxis_title='Recall',
|
69 |
+
yaxis_title='Precision',
|
70 |
+
)
|
71 |
+
|
72 |
+
return fig
|
73 |
+
|
74 |
+
|
75 |
+
def plot_binary_pr_curve(clf, X_test: np.ndarray, y_test:np.array):
|
76 |
+
# make predictions on the test data
|
77 |
+
y_pred = clf.decision_function(X_test)
|
78 |
+
|
79 |
+
# calculate precision and recall for different probability thresholds
|
80 |
+
precision, recall, _ = precision_recall_curve(y_test, y_pred)
|
81 |
+
|
82 |
+
# calculate the average precision
|
83 |
+
ap = average_precision_score(y_test, y_pred)
|
84 |
+
|
85 |
+
# Plotting
|
86 |
+
fig = go.Figure()
|
87 |
+
|
88 |
+
fig.add_trace(
|
89 |
+
go.Scatter(
|
90 |
+
x=recall,
|
91 |
+
y=precision,
|
92 |
+
mode="lines",
|
93 |
+
name=f"LinearSVC (AP={ap:.2f})",
|
94 |
+
line=dict(color="blue"),
|
95 |
+
showlegend=True,
|
96 |
+
line_shape="hv"
|
97 |
+
)
|
98 |
+
)
|
99 |
+
|
100 |
+
# Make x-range slightly larger than max value
|
101 |
+
fig.update_xaxes(range=[-0.05, 1.05])
|
102 |
+
# Make Legend text size larger
|
103 |
+
fig.update_layout(
|
104 |
+
title='2-Class Precision-Recall Curve',
|
105 |
+
xaxis_title='Recall (Positive label: 1)',
|
106 |
+
yaxis_title='Precision (Positive label: 1)',
|
107 |
+
legend=dict(
|
108 |
+
x=0.009,
|
109 |
+
y=0.05,
|
110 |
+
font=dict(
|
111 |
+
size=12,
|
112 |
+
),
|
113 |
+
)
|
114 |
+
)
|
115 |
+
|
116 |
+
return fig
|
117 |
+
|