File size: 5,850 Bytes
0d803eb 12e8f06 0d803eb 12e8f06 d4ce165 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 12e8f06 12f0ea9 0d803eb 12f0ea9 0d803eb 12f0ea9 0d803eb 12f0ea9 12e8f06 12f0ea9 d4ce165 12f0ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""
Demo is based on https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html
"""
import sys
import numpy as np
import pandas as pd
symbol_dict = {
"TOT": "Total",
"XOM": "Exxon",
"CVX": "Chevron",
"COP": "ConocoPhillips",
"VLO": "Valero Energy",
"MSFT": "Microsoft",
"IBM": "IBM",
"TWX": "Time Warner",
"CMCSA": "Comcast",
"CVC": "Cablevision",
"YHOO": "Yahoo",
"DELL": "Dell",
"HPQ": "HP",
"AMZN": "Amazon",
"TM": "Toyota",
"CAJ": "Canon",
"SNE": "Sony",
"F": "Ford",
"HMC": "Honda",
"NAV": "Navistar",
"NOC": "Northrop Grumman",
"BA": "Boeing",
"KO": "Coca Cola",
"MMM": "3M",
"MCD": "McDonald's",
"PEP": "Pepsi",
"K": "Kellogg",
"UN": "Unilever",
"MAR": "Marriott",
"PG": "Procter Gamble",
"CL": "Colgate-Palmolive",
"GE": "General Electrics",
"WFC": "Wells Fargo",
"JPM": "JPMorgan Chase",
"AIG": "AIG",
"AXP": "American express",
"BAC": "Bank of America",
"GS": "Goldman Sachs",
"AAPL": "Apple",
"SAP": "SAP",
"CSCO": "Cisco",
"TXN": "Texas Instruments",
"XRX": "Xerox",
"WMT": "Wal-Mart",
"HD": "Home Depot",
"GSK": "GlaxoSmithKline",
"PFE": "Pfizer",
"SNY": "Sanofi-Aventis",
"NVS": "Novartis",
"KMB": "Kimberly-Clark",
"R": "Ryder",
"GD": "General Dynamics",
"RTN": "Raytheon",
"CVS": "CVS",
"CAT": "Caterpillar",
"DD": "DuPont de Nemours",
}
symbols, names = np.array(sorted(symbol_dict.items())).T
quotes = []
for symbol in symbols:
print("Fetching quote history for %r" % symbol, file=sys.stderr)
url = (
"https://raw.githubusercontent.com/scikit-learn/examples-data/"
"master/financial-data/{}.csv"
)
quotes.append(pd.read_csv(url.format(symbol)))
close_prices = np.vstack([q["close"] for q in quotes])
open_prices = np.vstack([q["open"] for q in quotes])
# The daily variations of the quotes are what carry the most information
variation = close_prices - open_prices
from sklearn import covariance
alphas = np.logspace(-1.5, 1, num=10)
edge_model = covariance.GraphicalLassoCV(alphas=alphas)
# standardize the time series: using correlations rather than covariance
# former is more efficient for structurerelations rather than covariance
# former is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)
from sklearn import cluster
_, labels = cluster.affinity_propagation(edge_model.covariance_, random_state=0)
n_labels = labels.max()
# Finding a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane
from sklearn import manifold
node_position_model = manifold.LocallyLinearEmbedding(
n_components=3, eigen_solver="dense", n_neighbors=6
)
embedding = node_position_model.fit_transform(X.T).T
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import plotly.graph_objs as go
def visualize_stocks():
# Plot the graph of partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = np.abs(np.triu(partial_correlations, k=1)) > 0.02
# Plot the nodes using the coordinates of our embedding
scatter = go.Scatter3d(
x=embedding[0],
y=embedding[1],
z=embedding[2],
mode="markers",
marker=dict(size=35 * d**2, color=labels, colorscale="Viridis"),
hovertext=names,
hovertemplate="%{hovertext}<br>",
)
# # Plot the edges
start_idx, end_idx = np.where(non_zero)
# print(non_zero, non_zero.shape)
# print(start_idx, start_idx.shape)
segments = [
dict(
x=[embedding[0][start], embedding[0][stop]],
y=[embedding[1][start], embedding[1][stop]],
z=[embedding[2][start], embedding[2][stop]],
colorscale="Hot",
color=np.abs(partial_correlations[start, stop]),
line=dict(width=10 * np.abs(partial_correlations[start, stop])),
)
for start, stop in zip(start_idx, end_idx)
]
fig = go.Figure(data=[scatter])
for idx, segment in enumerate(segments, 1):
fig.add_trace(
go.Scatter3d(
x=segment["x"], # x-coordinates of the line segment
y=segment["y"], # y-coordinates of the line segment
z=segment["z"], # z-coordinates of the line segment
mode="lines", # type of the plot (line)
line=dict(
color=segment["color"], # color of the line
colorscale=segment["colorscale"], # color scale of the line
width=segment["line"]["width"] * 2.5, # width of the line
),
hoverinfo="none", # disable hover for the line segments
),
)
fig.data[idx].showlegend = False
return fig
import gradio as gr
title = " π Visualizing the stock market structure π"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(" Data is of 56 stocks between the period of 2003 - 2008 <br>")
gr.Markdown(
" Stocks the move in together with each other are grouped together in a cluster <br>"
)
gr.Markdown(
" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html)**"
)
for i in range(n_labels + 1):
gr.Markdown(f"Cluster {i + 1}: {', '.join(names[labels == i])}")
btn = gr.Button(value="Visualize")
btn.click(
visualize_stocks, outputs=gr.Plot(label="Visualizing stock into clusters")
)
demo.launch()
|