Spaces:
Running
Running
Commit
·
3338479
1
Parent(s):
3f87473
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from threading import Thread
|
4 |
+
from matplotlib.colors import ListedColormap
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.datasets import make_moons, make_circles, make_classification
|
8 |
+
from sklearn.neural_network import MLPClassifier
|
9 |
+
from sklearn.neighbors import KNeighborsClassifier
|
10 |
+
from sklearn.svm import SVC
|
11 |
+
from sklearn.gaussian_process import GaussianProcessClassifier
|
12 |
+
from sklearn.gaussian_process.kernels import RBF
|
13 |
+
from sklearn.tree import DecisionTreeClassifier
|
14 |
+
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
|
15 |
+
from sklearn.naive_bayes import GaussianNB
|
16 |
+
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
|
17 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
18 |
+
from sklearn.datasets import make_blobs, make_circles, make_moons
|
19 |
+
import gradio as gr
|
20 |
+
import math
|
21 |
+
from functools import partial
|
22 |
+
import time
|
23 |
+
|
24 |
+
import matplotlib
|
25 |
+
|
26 |
+
from sklearn import svm
|
27 |
+
from sklearn.datasets import make_moons, make_blobs
|
28 |
+
from sklearn.covariance import EllipticEnvelope
|
29 |
+
from sklearn.ensemble import IsolationForest
|
30 |
+
from sklearn.neighbors import LocalOutlierFactor
|
31 |
+
from sklearn.linear_model import SGDOneClassSVM
|
32 |
+
from sklearn.kernel_approximation import Nystroem
|
33 |
+
from sklearn.pipeline import make_pipeline
|
34 |
+
|
35 |
+
|
36 |
+
### DATASETS
|
37 |
+
|
38 |
+
def normalize(X):
|
39 |
+
return StandardScaler().fit_transform(X)
|
40 |
+
|
41 |
+
# Example settings
|
42 |
+
n_samples = 300
|
43 |
+
outliers_fraction = 0.15
|
44 |
+
n_outliers = int(outliers_fraction * n_samples)
|
45 |
+
n_inliers = n_samples - n_outliers
|
46 |
+
|
47 |
+
#### MODELS
|
48 |
+
|
49 |
+
def get_groundtruth_model(X, labels):
|
50 |
+
# dummy model to show true label distribution
|
51 |
+
class Dummy:
|
52 |
+
def __init__(self, y):
|
53 |
+
self.labels_ = labels
|
54 |
+
|
55 |
+
return Dummy(labels)
|
56 |
+
############
|
57 |
+
# Define datasets
|
58 |
+
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
|
59 |
+
DATA_MAPPING = {
|
60 |
+
"Central Blob":make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
|
61 |
+
"Two Blobs": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
|
62 |
+
"Blob with Noise": make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
|
63 |
+
"Moons": 4.0
|
64 |
+
* (
|
65 |
+
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
|
66 |
+
- np.array([0.5, 0.25])
|
67 |
+
),
|
68 |
+
"Noise": 14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
NAME_CLF_MAPPING = {"Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
|
73 |
+
"One-Class SVM": svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1),
|
74 |
+
"One-Class SVM (SGD)":make_pipeline(
|
75 |
+
Nystroem(gamma=0.1, random_state=42, n_components=150),
|
76 |
+
SGDOneClassSVM(
|
77 |
+
nu=outliers_fraction,
|
78 |
+
shuffle=True,
|
79 |
+
fit_intercept=True,
|
80 |
+
random_state=42,
|
81 |
+
tol=1e-6,
|
82 |
+
),
|
83 |
+
),
|
84 |
+
"Isolation Forest": IsolationForest(contamination=outliers_fraction, random_state=42),
|
85 |
+
"Local Outlier Factor": LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction),
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
###########################################################
|
91 |
+
|
92 |
+
# Compare given classifiers under given settings
|
93 |
+
|
94 |
+
DATASETS = [
|
95 |
+
make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
|
96 |
+
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
|
97 |
+
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
|
98 |
+
4.0
|
99 |
+
* (
|
100 |
+
make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
|
101 |
+
- np.array([0.5, 0.25])
|
102 |
+
),
|
103 |
+
14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
|
104 |
+
]
|
105 |
+
########################################################
|
106 |
+
|
107 |
+
|
108 |
+
###########
|
109 |
+
|
110 |
+
#### PLOT
|
111 |
+
FIGSIZE = 7,7
|
112 |
+
figure = plt.figure(figsize=(25, 10))
|
113 |
+
i = 1
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
def train_models(selected_data, clf_name):
|
119 |
+
xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))
|
120 |
+
clf = NAME_CLF_MAPPING[clf_name]
|
121 |
+
plt.figure(figsize=(len(NAME_CLF_MAPPING) * 2 + 4, 12.5))
|
122 |
+
|
123 |
+
|
124 |
+
plot_num = 1
|
125 |
+
rng = np.random.RandomState(42)
|
126 |
+
X = DATA_MAPPING[selected_data]
|
127 |
+
X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)
|
128 |
+
|
129 |
+
t0 = time.time()
|
130 |
+
clf.fit(X)
|
131 |
+
t1 = time.time()
|
132 |
+
# fit the data and tag outliers
|
133 |
+
if clf_name == "Local Outlier Factor":
|
134 |
+
y_pred = clf.fit_predict(X)
|
135 |
+
else:
|
136 |
+
y_pred = clf.fit(X).predict(X)
|
137 |
+
|
138 |
+
# plot the levels lines and the points
|
139 |
+
if clf_name != "Local Outlier Factor": # LOF does not implement predict
|
140 |
+
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
|
141 |
+
Z = Z.reshape(xx.shape)
|
142 |
+
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="black")
|
143 |
+
|
144 |
+
colors = np.array(["#377eb8", "#ff7f00"])
|
145 |
+
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])
|
146 |
+
|
147 |
+
plt.xlim(-7, 7)
|
148 |
+
plt.ylim(-7, 7)
|
149 |
+
plt.xticks(())
|
150 |
+
plt.yticks(())
|
151 |
+
plt.text(
|
152 |
+
0.99,
|
153 |
+
0.01,
|
154 |
+
("%.2fs" % (t1 - t0)).lstrip("0"),
|
155 |
+
transform=plt.gca().transAxes,
|
156 |
+
size=15,
|
157 |
+
horizontalalignment="right",
|
158 |
+
)
|
159 |
+
plot_num += 1
|
160 |
+
|
161 |
+
return plt
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
description = "Learn how different anomaly detection algorithms perform in different datasets."
|
166 |
+
|
167 |
+
def iter_grid(n_rows, n_cols):
|
168 |
+
# create a grid using gradio Block
|
169 |
+
for _ in range(n_rows):
|
170 |
+
with gr.Row():
|
171 |
+
for _ in range(n_cols):
|
172 |
+
with gr.Column():
|
173 |
+
yield
|
174 |
+
|
175 |
+
title = "🕵️♀️ compare anomaly detection algorithms 🕵️♀️"
|
176 |
+
with gr.Blocks() as demo:
|
177 |
+
gr.Markdown(f"## {title}")
|
178 |
+
gr.Markdown(description)
|
179 |
+
|
180 |
+
input_models = list(NAME_CLF_MAPPING)
|
181 |
+
input_data = gr.Radio(
|
182 |
+
choices=["Central Blob", "Two Blobs", "Blob with Noise", "Moons", "Noise"],
|
183 |
+
value="Moons"
|
184 |
+
)
|
185 |
+
counter = 0
|
186 |
+
|
187 |
+
|
188 |
+
for _ in iter_grid(5, 5):
|
189 |
+
if counter >= len(input_models):
|
190 |
+
break
|
191 |
+
|
192 |
+
input_model = input_models[counter]
|
193 |
+
plot = gr.Plot(label=input_model)
|
194 |
+
fn = partial(train_models, clf_name=input_model)
|
195 |
+
input_data.change(fn=fn, inputs=[input_data], outputs=plot)
|
196 |
+
counter += 1
|
197 |
+
|
198 |
+
demo.launch(enable_queue=True, debug=True)
|
199 |
+
|