Spaces:
Runtime error
Runtime error
Benjamin Bossan
commited on
Commit
·
6674a4f
1
Parent(s):
bb1f0db
Initial commit
Browse files- README.md +5 -1
- app.py +206 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -8,6 +8,10 @@ sdk_version: 3.0.24
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bsd-3-clause
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bsd-3-clause
|
11 |
+
tags:
|
12 |
+
- sklearn
|
13 |
---
|
14 |
|
15 |
+
# Clustering with scikit learn
|
16 |
+
|
17 |
+
Gradio demo based on this [sklearn demo](https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html).
|
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Gradio demo for different clustering techiniques
|
2 |
+
|
3 |
+
Derived from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.cluster import (
|
11 |
+
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
|
12 |
+
)
|
13 |
+
from sklearn.datasets import make_blobs, make_circles, make_moons
|
14 |
+
from sklearn.mixture import GaussianMixture
|
15 |
+
from sklearn.neighbors import kneighbors_graph
|
16 |
+
from sklearn.preprocessing import StandardScaler
|
17 |
+
|
18 |
+
|
19 |
+
plt.style.use('seaborn')
|
20 |
+
|
21 |
+
|
22 |
+
SEED = 0
|
23 |
+
N_CLUSTERS = 4
|
24 |
+
N_SAMPLES = 1000
|
25 |
+
np.random.seed(SEED)
|
26 |
+
|
27 |
+
|
28 |
+
def normalize(X):
|
29 |
+
return StandardScaler().fit_transform(X)
|
30 |
+
|
31 |
+
|
32 |
+
def get_regular():
|
33 |
+
centers = [[1, 1], [1, -1], [-1, 1], [-1, -1]]
|
34 |
+
assert len(centers) == N_CLUSTERS
|
35 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.7, random_state=SEED)
|
36 |
+
return normalize(X), labels
|
37 |
+
|
38 |
+
|
39 |
+
def get_circles():
|
40 |
+
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
|
41 |
+
return normalize(X), labels
|
42 |
+
|
43 |
+
|
44 |
+
def get_moons():
|
45 |
+
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
|
46 |
+
return normalize(X), labels
|
47 |
+
|
48 |
+
|
49 |
+
def get_noise():
|
50 |
+
X, labels = np.random.rand(N_SAMPLES, 2), np.zeros(N_SAMPLES)
|
51 |
+
return normalize(X), labels
|
52 |
+
|
53 |
+
|
54 |
+
def get_anisotropic():
|
55 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=N_CLUSTERS, random_state=170)
|
56 |
+
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
57 |
+
X = np.dot(X, transformation)
|
58 |
+
return X, labels
|
59 |
+
|
60 |
+
|
61 |
+
def get_varied():
|
62 |
+
X, labels = make_blobs(
|
63 |
+
n_samples=N_SAMPLES, cluster_std=[1.0, 2.5, 0.5], random_state=SEED
|
64 |
+
)
|
65 |
+
return normalize(X), labels
|
66 |
+
|
67 |
+
|
68 |
+
DATA_MAPPING = {
|
69 |
+
'regular': get_regular,
|
70 |
+
'circles': get_circles,
|
71 |
+
'moons': get_moons,
|
72 |
+
'noise': get_noise,
|
73 |
+
'anisotropic': get_anisotropic,
|
74 |
+
'varied': get_varied,
|
75 |
+
}
|
76 |
+
|
77 |
+
def get_kmeans(X, **kwargs):
|
78 |
+
model = KMeans(init="k-means++", n_clusters=N_CLUSTERS, n_init=10, random_state=SEED)
|
79 |
+
model.set_params(**kwargs)
|
80 |
+
return model.fit(X)
|
81 |
+
|
82 |
+
|
83 |
+
def get_dbscan(X, **kwargs):
|
84 |
+
model = DBSCAN(eps=0.3)
|
85 |
+
model.set_params(**kwargs)
|
86 |
+
return model.fit(X)
|
87 |
+
|
88 |
+
|
89 |
+
def get_agglomerative(X, **kwargs):
|
90 |
+
connectivity = kneighbors_graph(
|
91 |
+
X, n_neighbors=N_CLUSTERS, include_self=False
|
92 |
+
)
|
93 |
+
# make connectivity symmetric
|
94 |
+
connectivity = 0.5 * (connectivity + connectivity.T)
|
95 |
+
model = AgglomerativeClustering(
|
96 |
+
n_clusters=N_CLUSTERS, linkage="ward", connectivity=connectivity
|
97 |
+
)
|
98 |
+
model.set_params(**kwargs)
|
99 |
+
return model.fit(X)
|
100 |
+
|
101 |
+
|
102 |
+
def get_meanshift(X, **kwargs):
|
103 |
+
bandwidth = estimate_bandwidth(X, quantile=0.3)
|
104 |
+
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
105 |
+
model.set_params(**kwargs)
|
106 |
+
return model.fit(X)
|
107 |
+
|
108 |
+
|
109 |
+
def get_spectral(X, **kwargs):
|
110 |
+
model = SpectralClustering(
|
111 |
+
n_clusters=N_CLUSTERS,
|
112 |
+
eigen_solver="arpack",
|
113 |
+
affinity="nearest_neighbors",
|
114 |
+
)
|
115 |
+
model.set_params(**kwargs)
|
116 |
+
return model.fit(X)
|
117 |
+
|
118 |
+
|
119 |
+
def get_optics(X, **kwargs):
|
120 |
+
model = OPTICS(
|
121 |
+
min_samples=7,
|
122 |
+
xi=0.05,
|
123 |
+
min_cluster_size=0.1,
|
124 |
+
)
|
125 |
+
model.set_params(**kwargs)
|
126 |
+
return model.fit(X)
|
127 |
+
|
128 |
+
|
129 |
+
def get_birch(X, **kwargs):
|
130 |
+
model = Birch(n_clusters=3)
|
131 |
+
model.set_params(**kwargs)
|
132 |
+
return model.fit(X)
|
133 |
+
|
134 |
+
|
135 |
+
def get_gaussianmixture(X, **kwargs):
|
136 |
+
model = GaussianMixture(
|
137 |
+
n_components=N_CLUSTERS, covariance_type="full", random_state=SEED,
|
138 |
+
)
|
139 |
+
model.set_params(**kwargs)
|
140 |
+
return model.fit(X)
|
141 |
+
|
142 |
+
|
143 |
+
MODEL_MAPPING = {
|
144 |
+
'KMeans': get_kmeans,
|
145 |
+
'DBSCAN': get_dbscan,
|
146 |
+
'AgglomerativeClustering': get_agglomerative,
|
147 |
+
'MeanShift': get_meanshift,
|
148 |
+
'SpectralClustering': get_spectral,
|
149 |
+
'OPTICS': get_optics,
|
150 |
+
'Birch': get_birch,
|
151 |
+
'GaussianMixture': get_gaussianmixture,
|
152 |
+
}
|
153 |
+
|
154 |
+
|
155 |
+
def plot_clusters(ax, X, labels):
|
156 |
+
for label in range(N_CLUSTERS):
|
157 |
+
idx = labels == label
|
158 |
+
if not sum(idx):
|
159 |
+
continue
|
160 |
+
ax.scatter(X[idx, 0], X[idx, 1])
|
161 |
+
|
162 |
+
ax.grid(None)
|
163 |
+
ax.set_xticks([])
|
164 |
+
ax.set_yticks([])
|
165 |
+
return ax
|
166 |
+
|
167 |
+
|
168 |
+
def cluster(clustering_algorithm: str, dataset: str):
|
169 |
+
X, labels = DATA_MAPPING[dataset]()
|
170 |
+
model = MODEL_MAPPING[clustering_algorithm](X)
|
171 |
+
if hasattr(model, "labels_"):
|
172 |
+
y_pred = model.labels_.astype(int)
|
173 |
+
else:
|
174 |
+
y_pred = model.predict(X)
|
175 |
+
|
176 |
+
fig, axes = plt.subplots(1, 2, figsize=(16, 8))
|
177 |
+
|
178 |
+
ax = axes[0]
|
179 |
+
plot_clusters(ax, X, labels)
|
180 |
+
ax.set_title("True clusters")
|
181 |
+
|
182 |
+
ax = axes[1]
|
183 |
+
plot_clusters(ax, X, y_pred)
|
184 |
+
ax.set_title(clustering_algorithm)
|
185 |
+
|
186 |
+
return fig
|
187 |
+
|
188 |
+
|
189 |
+
demo = gr.Interface(
|
190 |
+
fn=cluster,
|
191 |
+
inputs=[
|
192 |
+
gr.Radio(
|
193 |
+
list(MODEL_MAPPING),
|
194 |
+
value="KMeans",
|
195 |
+
label="clustering algorithm"
|
196 |
+
),
|
197 |
+
gr.Radio(
|
198 |
+
list(DATA_MAPPING),
|
199 |
+
value="regular",
|
200 |
+
label="dataset"
|
201 |
+
),
|
202 |
+
],
|
203 |
+
outputs=gr.Plot(),
|
204 |
+
)
|
205 |
+
|
206 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
matplotlib>=3.5.2
|
2 |
+
scikit-learn>=1.0.1
|