Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code source: Gaël Varoquaux
|
2 |
+
# Modified for documentation by Jaques Grobler
|
3 |
+
# License: BSD 3 clause
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
from sklearn import datasets, cluster
|
11 |
+
from sklearn.feature_extraction.image import grid_to_graph
|
12 |
+
from datasets import load_dataset
|
13 |
+
|
14 |
+
plt.switch_backend("agg")
|
15 |
+
|
16 |
+
|
17 |
+
# Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
|
18 |
+
theme = gr.themes.Monochrome(
|
19 |
+
primary_hue="indigo",
|
20 |
+
secondary_hue="blue",
|
21 |
+
neutral_hue="slate",
|
22 |
+
radius_size=gr.themes.sizes.radius_sm,
|
23 |
+
font=[
|
24 |
+
gr.themes.GoogleFont("Open Sans"),
|
25 |
+
"ui-sans-serif",
|
26 |
+
"system-ui",
|
27 |
+
"sans-serif",
|
28 |
+
],
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def do_submit(n_clusters):
|
33 |
+
# Load the dataset
|
34 |
+
dataset = load_dataset("sklearn-docs/digits", header=None)
|
35 |
+
# convert dataset to pandas
|
36 |
+
df = dataset["train"].to_pandas()
|
37 |
+
X = df.iloc[:, :64]
|
38 |
+
labels = df.iloc[:, 64]
|
39 |
+
images = X.values.reshape(-1, 8, 8)
|
40 |
+
connectivity = grid_to_graph(*images[0].shape)
|
41 |
+
|
42 |
+
agglo = cluster.FeatureAgglomeration(
|
43 |
+
connectivity=connectivity, n_clusters=int(n_clusters)
|
44 |
+
)
|
45 |
+
agglo.fit(X)
|
46 |
+
X_reduced = agglo.transform(X)
|
47 |
+
|
48 |
+
X_restored = agglo.inverse_transform(X_reduced)
|
49 |
+
images_restored = np.reshape(X_restored, images.shape)
|
50 |
+
plt.figure(1, figsize=(4, 3.5))
|
51 |
+
plt.clf()
|
52 |
+
plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.91)
|
53 |
+
for i in range(4):
|
54 |
+
plt.subplot(3, 4, i + 1)
|
55 |
+
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest")
|
56 |
+
plt.xticks(())
|
57 |
+
plt.yticks(())
|
58 |
+
if i == 1:
|
59 |
+
plt.title("Original data")
|
60 |
+
plt.subplot(3, 4, 4 + i + 1)
|
61 |
+
plt.imshow(
|
62 |
+
images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation="nearest"
|
63 |
+
)
|
64 |
+
if i == 1:
|
65 |
+
plt.title("Agglomerated data")
|
66 |
+
plt.xticks(())
|
67 |
+
plt.yticks(())
|
68 |
+
|
69 |
+
plt.subplot(3, 4, 10)
|
70 |
+
plt.imshow(
|
71 |
+
np.reshape(agglo.labels_, images[0].shape),
|
72 |
+
interpolation="nearest",
|
73 |
+
cmap=plt.cm.nipy_spectral,
|
74 |
+
)
|
75 |
+
plt.xticks(())
|
76 |
+
plt.yticks(())
|
77 |
+
plt.title("Labels")
|
78 |
+
return plt
|
79 |
+
|
80 |
+
|
81 |
+
title = "Feature Agglomeration"
|
82 |
+
with gr.Blocks(title=title, theme=theme) as demo:
|
83 |
+
gr.Markdown(f"## {title}")
|
84 |
+
gr.Markdown(
|
85 |
+
"<b>These images show how similar features are merged together using feature agglomeration.</b>"
|
86 |
+
)
|
87 |
+
gr.Markdown(
|
88 |
+
"[Scikit-learn Example](https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_agglomeration.html)"
|
89 |
+
)
|
90 |
+
|
91 |
+
gr.Markdown(
|
92 |
+
"The FeatureAgglomeration uses [agglomerative clustering](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering)\
|
93 |
+
to group together features that look very similar, thus decreasing the number of features. It is a dimensionality reduction \
|
94 |
+
tool, see [Unsupervised dimensionality reduction](https://scikit-learn.org/stable/modules/unsupervised_reduction.html#data-reduction)."
|
95 |
+
)
|
96 |
+
n_clusters = gr.Slider(
|
97 |
+
minimum=10,
|
98 |
+
maximum=50,
|
99 |
+
label="Number of clusters",
|
100 |
+
info="Number of clusters for FeatureAgglomeration",
|
101 |
+
step=1,
|
102 |
+
value=32,
|
103 |
+
)
|
104 |
+
|
105 |
+
sub_btn = gr.Button("Submit")
|
106 |
+
plt_out = gr.Plot()
|
107 |
+
|
108 |
+
sub_btn.click(fn=do_submit, inputs=[n_clusters], outputs=[plt_out])
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.launch()
|