File size: 3,384 Bytes
a79cd47
 
 
 
484451a
 
 
 
 
 
a79cd47
 
 
 
 
 
 
 
 
 
 
 
484451a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a79cd47
 
 
 
 
 
 
484451a
 
 
 
a79cd47
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

import matplotlib.cm as cm
from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
)

description = f"""
## Description
This demo can be used to evaluate the ability of k-means initializations strategies to make the algorithm convergence robust
"""

# TODO: Make the below parameters user passable
random_state = np.random.RandomState(0)

# k-means models can do several random inits so as to be able to trade
# CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

# Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size**2

def make_data(random_state, n_samples_per_center, grid_size, scale):
    random_state = check_random_state(random_state)
    centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)])
    n_clusters_true, n_features = centers.shape

    noise = random_state.normal(
        scale=scale, size=(n_samples_per_center, centers.shape[1])
    )

    X = np.concatenate([c + noise for c in centers])
    y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)])
    return shuffle(X, y, random_state=random_state)

def quant_evaluation(n_runs):
    plt.figure()
    plots = []
    legends = []
    
    cases = [
        (KMeans, "k-means++", {}, "^-"),
        (KMeans, "random", {}, "o-"),
        (MiniBatchKMeans, "k-means++", {"max_no_improvement": 3}, "x-"),
        (MiniBatchKMeans, "random", {"max_no_improvement": 3, "init_size": 500}, "d-"),
    ]
    
    for factory, init, params, format in cases:
        print("Evaluation of %s with %s init" % (factory.__name__, init))
        inertia = np.empty((len(n_init_range), n_runs))
    
        for run_id in range(n_runs):
            X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
            for i, n_init in enumerate(n_init_range):
                km = factory(
                    n_clusters=n_clusters,
                    init=init,
                    random_state=run_id,
                    n_init=n_init,
                    **params,
                ).fit(X)
                inertia[i, run_id] = km.inertia_
        p = plt.errorbar(
            n_init_range, inertia.mean(axis=1), inertia.std(axis=1), fmt=format
        )
        plots.append(p[0])
        legends.append("%s with %s init" % (factory.__name__, init))
    
    plt.xlabel("n_init")
    plt.ylabel("inertia")
    plt.legend(plots, legends)
    plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
    return plt 

with gr.Blocks(theme=theme) as demo:
    gr.Markdown('''
            <div>
            <h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization 📊</h1>
            </div>
        ''')
    gr.Markdown(description)
    n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
    run_button = gr.Button('Evaluate')
    plot_inertia = gr.Plot()
    run_button.click(fn=quant_evaluation, inputs=[n_runs], outputs=plot_inertia)

demo.launch()