RamAnanth1 commited on
Commit
c972581
·
1 Parent(s): 484451a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -4
app.py CHANGED
@@ -83,18 +83,45 @@ def quant_evaluation(n_runs):
83
  plt.ylabel("inertia")
84
  plt.legend(plots, legends)
85
  plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
86
- return plt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  with gr.Blocks(theme=theme) as demo:
89
  gr.Markdown('''
90
- <div>
91
  <h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization 📊</h1>
92
- </div>
93
  ''')
94
  gr.Markdown(description)
95
  n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
96
  run_button = gr.Button('Evaluate')
97
- plot_inertia = gr.Plot()
 
 
 
98
  run_button.click(fn=quant_evaluation, inputs=[n_runs], outputs=plot_inertia)
 
99
 
100
  demo.launch()
 
83
  plt.ylabel("inertia")
84
  plt.legend(plots, legends)
85
  plt.title("Mean inertia for various k-means init across %d runs" % n_runs)
86
+ return plt
87
+
88
+ def qual_evaluation():
89
+ X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
90
+ km = MiniBatchKMeans(
91
+ n_clusters=n_clusters, init="random", n_init=1, random_state=random_state
92
+ ).fit(X)
93
+
94
+ plt.figure()
95
+ for k in range(n_clusters):
96
+ my_members = km.labels_ == k
97
+ color = cm.nipy_spectral(float(k) / n_clusters, 1)
98
+ plt.plot(X[my_members, 0], X[my_members, 1], ".", c=color)
99
+ cluster_center = km.cluster_centers_[k]
100
+ plt.plot(
101
+ cluster_center[0],
102
+ cluster_center[1],
103
+ "o",
104
+ markerfacecolor=color,
105
+ markeredgecolor="k",
106
+ markersize=6,
107
+ )
108
+ plt.title(
109
+ "Example cluster allocation with a single random init\nwith MiniBatchKMeans"
110
+ )
111
+ return plt
112
 
113
  with gr.Blocks(theme=theme) as demo:
114
  gr.Markdown('''
 
115
  <h1 style='text-align: center'>Empirical evaluation of the impact of k-means initialization 📊</h1>
 
116
  ''')
117
  gr.Markdown(description)
118
  n_runs = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of Evaluation Runs")
119
  run_button = gr.Button('Evaluate')
120
+ run_button_qual = gr.Button('Generate Cluster Allocations')
121
+ with gr.Row():
122
+ plot_inertia = gr.Plot()
123
+ plot_vis = gr.Plot()
124
  run_button.click(fn=quant_evaluation, inputs=[n_runs], outputs=plot_inertia)
125
+ run_button_qual.click(fn=qual_evaluation, inputs=[], outputs=plot_vis)
126
 
127
  demo.launch()