Improve description and figure
Browse files
app.py
CHANGED
@@ -5,12 +5,15 @@ import numpy as np
|
|
5 |
from sklearn import datasets, linear_model
|
6 |
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
|
|
|
|
|
|
|
8 |
FIGSIZE = (10,10)
|
9 |
|
10 |
-
feature_names = ["
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"log
|
14 |
|
15 |
def create_dataset(feature_id=2):
|
16 |
# Load the diabetes dataset
|
@@ -59,15 +62,24 @@ def train_model(input_data):
|
|
59 |
plt.scatter(diabetes_X_test, diabetes_y_test, color="black")
|
60 |
plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)
|
61 |
|
|
|
|
|
|
|
62 |
plt.xticks(())
|
63 |
plt.yticks(())
|
64 |
|
65 |
-
|
66 |
-
|
67 |
return fig, regr.coef_, mse, r2
|
68 |
|
69 |
title = "Linear Regression Example π"
|
70 |
-
description = "The example shows how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Blocks() as demo:
|
72 |
gr.Markdown(f"## {title}")
|
73 |
gr.Markdown(description)
|
@@ -79,8 +91,8 @@ with gr.Blocks() as demo:
|
|
79 |
with gr.Column():
|
80 |
input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index")
|
81 |
coef = gr.Textbox(label="Coefficients")
|
82 |
-
mse = gr.Textbox(label="MSE")
|
83 |
-
r2 = gr.Textbox(label="R2")
|
84 |
|
85 |
input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False)
|
86 |
|
|
|
5 |
from sklearn import datasets, linear_model
|
6 |
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
|
8 |
+
import matplotlib
|
9 |
+
matplotlib.use('agg')
|
10 |
+
|
11 |
FIGSIZE = (10,10)
|
12 |
|
13 |
+
feature_names = ["Age", "Body-Mass Index (BMI)", "Blood Pressure",
|
14 |
+
"Total serum Cholesterol", "Low-Density Lipoproteins (LDL)",
|
15 |
+
"High-Density Lipoproteins (HDL)", "Total cholesterol / HDL",
|
16 |
+
"log(Serum Triglycerides Level) (possibly)","Blood Sugar Level"]
|
17 |
|
18 |
def create_dataset(feature_id=2):
|
19 |
# Load the diabetes dataset
|
|
|
62 |
plt.scatter(diabetes_X_test, diabetes_y_test, color="black")
|
63 |
plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)
|
64 |
|
65 |
+
plt.xlabel(input_data, fontsize=18)
|
66 |
+
plt.ylabel("Disease progression", fontsize=18)
|
67 |
+
|
68 |
plt.xticks(())
|
69 |
plt.yticks(())
|
70 |
|
|
|
|
|
71 |
return fig, regr.coef_, mse, r2
|
72 |
|
73 |
title = "Linear Regression Example π"
|
74 |
+
description = """The example shows how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset.
|
75 |
+
|
76 |
+
The diabetes dataset contains baseline variables (features), age, sex, body mass index, average blood pressure, and six blood serum measurements that were obtained for 442 diabetes patients.
|
77 |
+
The predictive variable is a quantitative measure of the disease progression one year after the baseline.
|
78 |
+
|
79 |
+
When selecting a feature from the drop-down menu, a linear regression model is trained for the specific feature and the predictive variable.
|
80 |
+
The figure shows a scatter plot of the test set as well as the linear model (line).
|
81 |
+
The mean square error and R2 scores are calculated using the test set and they are printed, along with the regression coefficiet of the model.
|
82 |
+
"""
|
83 |
with gr.Blocks() as demo:
|
84 |
gr.Markdown(f"## {title}")
|
85 |
gr.Markdown(description)
|
|
|
91 |
with gr.Column():
|
92 |
input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index")
|
93 |
coef = gr.Textbox(label="Coefficients")
|
94 |
+
mse = gr.Textbox(label="Mean Squared Error (MSE)")
|
95 |
+
r2 = gr.Textbox(label="R2 score")
|
96 |
|
97 |
input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False)
|
98 |
|