cmpatino's picture
Use HTML to center message's text
99dfe9b
raw
history blame
2.24 kB
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets import make_blobs
def get_clusters_plot(n_blobs, quantile, cluster_std):
X, _, centers = make_blobs(
n_samples=10000, cluster_std=cluster_std, centers=n_blobs, return_centers=True
)
bandwidth = estimate_bandwidth(X, quantile=quantile, n_samples=500)
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
fig = plt.figure()
for k in range(n_clusters_):
my_members = labels == k
cluster_center = cluster_centers[k]
plt.scatter(X[my_members, 0], X[my_members, 1])
plt.plot(
cluster_center[0],
cluster_center[1],
"x",
markeredgecolor="k",
markersize=14,
)
if len(centers) != n_clusters_:
message = (
'<p style="text-align: center;">'
+ f"The number of estimated clusters ({n_clusters_})"
+ f" differs from the true number of clusters ({n_blobs})."
+ " Try changing the `Quantile` parameter.</p>"
)
else:
message = (
'<p style="text-align: center;">'
+ f"The number of estimated clusters ({n_clusters_})"
+ f" matches the true number of clusters ({n_blobs})!</p>"
)
return fig, message
demo = gr.Interface(
get_clusters_plot,
[
gr.Slider(
minimum=2, maximum=10, label="Number of clusters in data", step=1, value=3
),
gr.Slider(
minimum=0,
maximum=1,
step=0.05,
value=0.2,
label="Quantile",
info="Used to determine clustering's bandwidth.",
),
gr.Slider(
minimum=0.1,
maximum=1,
label="Clusters standard deviation",
step=0.1,
value=0.6,
),
],
[gr.Plot(label="Clusters' Plot"), gr.HTML()],
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch()