Add quantile as parameter in the UI
Browse files
app.py
CHANGED
@@ -5,12 +5,12 @@ from sklearn.cluster import MeanShift, estimate_bandwidth
|
|
5 |
from sklearn.datasets import make_blobs
|
6 |
|
7 |
|
8 |
-
def get_clusters_plot(n_blobs, cluster_std):
|
9 |
X, _, centers = make_blobs(
|
10 |
n_samples=10000, cluster_std=cluster_std, centers=n_blobs, return_centers=True
|
11 |
)
|
12 |
|
13 |
-
bandwidth = estimate_bandwidth(X, quantile=
|
14 |
|
15 |
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
16 |
ms.fit(X)
|
@@ -20,25 +20,22 @@ def get_clusters_plot(n_blobs, cluster_std):
|
|
20 |
labels_unique = np.unique(labels)
|
21 |
n_clusters_ = len(labels_unique)
|
22 |
|
23 |
-
colors = ["#dede00", "#377eb8", "#f781bf"]
|
24 |
-
markers = ["x", "o", "^"]
|
25 |
-
|
26 |
fig = plt.figure()
|
27 |
|
28 |
-
for k
|
29 |
my_members = labels == k
|
30 |
cluster_center = cluster_centers[k]
|
31 |
-
plt.
|
32 |
plt.plot(
|
33 |
cluster_center[0],
|
34 |
cluster_center[1],
|
35 |
-
|
36 |
-
markerfacecolor=col,
|
37 |
markeredgecolor="k",
|
38 |
markersize=14,
|
39 |
)
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
|
44 |
demo = gr.Interface(
|
@@ -47,6 +44,14 @@ demo = gr.Interface(
|
|
47 |
gr.Slider(
|
48 |
minimum=2, maximum=10, label="Number of clusters in data", step=1, value=3
|
49 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
gr.Slider(
|
51 |
minimum=0.1,
|
52 |
maximum=1,
|
@@ -55,7 +60,7 @@ demo = gr.Interface(
|
|
55 |
value=0.6,
|
56 |
),
|
57 |
],
|
58 |
-
gr.Plot(),
|
59 |
allow_flagging="never",
|
60 |
)
|
61 |
|
|
|
5 |
from sklearn.datasets import make_blobs
|
6 |
|
7 |
|
8 |
+
def get_clusters_plot(n_blobs, quantile, cluster_std):
|
9 |
X, _, centers = make_blobs(
|
10 |
n_samples=10000, cluster_std=cluster_std, centers=n_blobs, return_centers=True
|
11 |
)
|
12 |
|
13 |
+
bandwidth = estimate_bandwidth(X, quantile=quantile, n_samples=500)
|
14 |
|
15 |
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
16 |
ms.fit(X)
|
|
|
20 |
labels_unique = np.unique(labels)
|
21 |
n_clusters_ = len(labels_unique)
|
22 |
|
|
|
|
|
|
|
23 |
fig = plt.figure()
|
24 |
|
25 |
+
for k in range(n_clusters_):
|
26 |
my_members = labels == k
|
27 |
cluster_center = cluster_centers[k]
|
28 |
+
plt.scatter(X[my_members, 0], X[my_members, 1])
|
29 |
plt.plot(
|
30 |
cluster_center[0],
|
31 |
cluster_center[1],
|
32 |
+
"x",
|
|
|
33 |
markeredgecolor="k",
|
34 |
markersize=14,
|
35 |
)
|
36 |
|
37 |
+
message = f"## True Clusters: {len(centers)} | Detected Clusters: {n_clusters_}"
|
38 |
+
return fig, message
|
39 |
|
40 |
|
41 |
demo = gr.Interface(
|
|
|
44 |
gr.Slider(
|
45 |
minimum=2, maximum=10, label="Number of clusters in data", step=1, value=3
|
46 |
),
|
47 |
+
gr.Slider(
|
48 |
+
minimum=0,
|
49 |
+
maximum=1,
|
50 |
+
step=0.05,
|
51 |
+
value=0.2,
|
52 |
+
label="Quantile",
|
53 |
+
info="Used to determine clustering's bandwidth.",
|
54 |
+
),
|
55 |
gr.Slider(
|
56 |
minimum=0.1,
|
57 |
maximum=1,
|
|
|
60 |
value=0.6,
|
61 |
),
|
62 |
],
|
63 |
+
[gr.Plot(), gr.Markdown()],
|
64 |
allow_flagging="never",
|
65 |
)
|
66 |
|