Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from time import time
|
5 |
+
from sklearn import metrics
|
6 |
+
from sklearn.pipeline import make_pipeline
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.cluster import KMeans
|
9 |
+
from sklearn.decomposition import PCA
|
10 |
+
from huggingface_hub import login
|
11 |
+
from datasets import load_dataset
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
|
15 |
+
# https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
|
16 |
+
|
17 |
+
def display_plot(data, n_digits):
|
18 |
+
reduced_data = PCA(n_components=2).fit_transform(data)
|
19 |
+
kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4)
|
20 |
+
kmeans.fit(reduced_data)
|
21 |
+
|
22 |
+
# Step size of the mesh. Decrease to increase the quality of the VQ.
|
23 |
+
h = 0.02 # point in the mesh [x_min, x_max]x[y_min, y_max].
|
24 |
+
|
25 |
+
# Plot the decision boundary. For that, we will assign a color to each
|
26 |
+
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
|
27 |
+
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
|
28 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
29 |
+
|
30 |
+
# Obtain labels for each point in mesh. Use last trained model.
|
31 |
+
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
|
32 |
+
|
33 |
+
# Put the result into a color plot
|
34 |
+
Z = Z.reshape(xx.shape)
|
35 |
+
|
36 |
+
fig = plt.figure()
|
37 |
+
|
38 |
+
plt.clf()
|
39 |
+
plt.imshow(
|
40 |
+
Z,
|
41 |
+
interpolation="nearest",
|
42 |
+
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
|
43 |
+
cmap=plt.cm.Paired,
|
44 |
+
aspect="auto",
|
45 |
+
origin="lower",
|
46 |
+
)
|
47 |
+
|
48 |
+
plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
|
49 |
+
# Plot the centroids as a white X
|
50 |
+
centroids = kmeans.cluster_centers_
|
51 |
+
plt.scatter(
|
52 |
+
centroids[:, 0],
|
53 |
+
centroids[:, 1],
|
54 |
+
marker="x",
|
55 |
+
s=169,
|
56 |
+
linewidths=3,
|
57 |
+
color="w",
|
58 |
+
zorder=10,
|
59 |
+
)
|
60 |
+
plt.title(
|
61 |
+
"K-means clustering on the digits dataset (PCA-reduced data)\n"
|
62 |
+
"Centroids are marked with white cross"
|
63 |
+
)
|
64 |
+
plt.xlim(x_min, x_max)
|
65 |
+
plt.ylim(y_min, y_max)
|
66 |
+
plt.xticks(())
|
67 |
+
plt.yticks(())
|
68 |
+
return fig
|
69 |
+
|
70 |
+
def bench_k_means(kmeans, name, data, labels):
|
71 |
+
"""Benchmark to evaluate the KMeans initialization methods.
|
72 |
+
|
73 |
+
Parameters
|
74 |
+
----------
|
75 |
+
kmeans : KMeans instance
|
76 |
+
A :class:`~sklearn.cluster.KMeans` instance with the initialization
|
77 |
+
already set.
|
78 |
+
name : str
|
79 |
+
Name given to the strategy. It will be used to show the results in a
|
80 |
+
table.
|
81 |
+
data : ndarray of shape (n_samples, n_features)
|
82 |
+
The data to cluster.
|
83 |
+
labels : ndarray of shape (n_samples,)
|
84 |
+
The labels used to compute the clustering metrics which requires some
|
85 |
+
supervision.
|
86 |
+
"""
|
87 |
+
t0 = time()
|
88 |
+
estimator = make_pipeline(StandardScaler(), kmeans).fit(data)
|
89 |
+
fit_time = time() - t0
|
90 |
+
results = [name, fit_time, estimator[-1].inertia_]
|
91 |
+
|
92 |
+
# Define the metrics which require only the true labels and estimator
|
93 |
+
# labels
|
94 |
+
clustering_metrics = [
|
95 |
+
metrics.homogeneity_score,
|
96 |
+
metrics.completeness_score,
|
97 |
+
metrics.v_measure_score,
|
98 |
+
metrics.adjusted_rand_score,
|
99 |
+
metrics.adjusted_mutual_info_score,
|
100 |
+
]
|
101 |
+
results += [m(labels, estimator[-1].labels_) for m in clustering_metrics]
|
102 |
+
|
103 |
+
# The silhouette score requires the full dataset
|
104 |
+
results += [
|
105 |
+
metrics.silhouette_score(
|
106 |
+
data,
|
107 |
+
estimator[-1].labels_,
|
108 |
+
metric="euclidean",
|
109 |
+
sample_size=300,
|
110 |
+
)
|
111 |
+
]
|
112 |
+
|
113 |
+
return results
|
114 |
+
|
115 |
+
title = "A demo of K-Means clustering on the handwritten digits data"
|
116 |
+
def do_submit(kmeans_n_digit,random_n_digit, pca_n_digit):
|
117 |
+
# Load the dataset
|
118 |
+
dataset = load_dataset("sklearn-docs/digits", header=None)
|
119 |
+
# convert dataset to pandas
|
120 |
+
df = dataset['train'].to_pandas()
|
121 |
+
data = df.iloc[:, :64]
|
122 |
+
labels = df.iloc[:, 64]
|
123 |
+
|
124 |
+
kmeans = KMeans(init="k-means++", n_clusters=int(kmeans_n_digit), n_init=4, random_state=0)
|
125 |
+
results = bench_k_means(kmeans=kmeans, name="k-means++", data=data, labels=labels)
|
126 |
+
|
127 |
+
df = pd.DataFrame(results).T
|
128 |
+
numeric_cols = ['time','inertia','homo','compl','v-meas','ARI','AMI','silhouette']
|
129 |
+
df.columns = ['init'] + numeric_cols
|
130 |
+
|
131 |
+
kmeans = KMeans(init="random", n_clusters=int(random_n_digit), n_init=4, random_state=0)
|
132 |
+
results = bench_k_means(kmeans=kmeans, name="random", data=data, labels=labels)
|
133 |
+
df.loc[len(df.index)] = results
|
134 |
+
|
135 |
+
pca = PCA(n_components=int(pca_n_digit)).fit(data)
|
136 |
+
kmeans = KMeans(init=pca.components_, n_clusters=int(pca_n_digit), n_init=1)
|
137 |
+
results = bench_k_means(kmeans=kmeans, name="PCA-based", data=data, labels=labels)
|
138 |
+
df.loc[len(df.index)] = results
|
139 |
+
df[df.columns[1:]] = df.iloc[:,1:].astype(float).round(3)
|
140 |
+
|
141 |
+
df = df.T #Transpose for display
|
142 |
+
df.columns = df.iloc[0,:].tolist()
|
143 |
+
df = df.iloc[1:,:].reset_index()
|
144 |
+
df.columns = ['metrics', 'k-means++', 'random', 'PCA-based']
|
145 |
+
return display_plot(data, kmeans_n_digit), df
|
146 |
+
|
147 |
+
#Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
|
148 |
+
theme = gr.themes.Monochrome(
|
149 |
+
primary_hue="indigo",
|
150 |
+
secondary_hue="blue",
|
151 |
+
neutral_hue="slate",
|
152 |
+
radius_size=gr.themes.sizes.radius_sm,
|
153 |
+
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Blocks(title=title, theme=theme) as demo:
|
157 |
+
gr.Markdown(f"## {title}")
|
158 |
+
gr.Markdown("[Scikit-learn Example](https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py)")
|
159 |
+
gr.Markdown("In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results.")
|
160 |
+
gr.Markdown("As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth.")
|
161 |
+
gr.Markdown("Cluster quality metrics evaluated (see [Clustering performance evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) \
|
162 |
+
for definitions and discussions of the metrics):")
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
with gr.Column(scale=0.5):
|
166 |
+
kmeans_n_digit = gr.Slider(minimum=2, maximum=10, label="KMeans n_digits", step=1, value=10)
|
167 |
+
random_n_digit = gr.Slider(minimum=2, maximum=10, label="Random n_digits", step=1, value=10)
|
168 |
+
pca_n_digit = gr.Slider(minimum=2, maximum=10, label="PCA n_digits",step=1, value=10)
|
169 |
+
|
170 |
+
plt_out = gr.Plot()
|
171 |
+
|
172 |
+
with gr.Column(scale=0.5):
|
173 |
+
sample_df = pd.DataFrame(np.zeros((9,4)),columns=['metrics', 'k-means++', 'random', 'PCA-based'])
|
174 |
+
|
175 |
+
output = gr.Dataframe(sample_df, label="Output Table")
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
sub_btn = gr.Button("Submit")
|
181 |
+
sub_btn.click(fn=do_submit, inputs=[kmeans_n_digit,random_n_digit, pca_n_digit], outputs=[plt_out, output])
|
182 |
+
|
183 |
+
demo.launch()
|