Spaces:
Sleeping
Sleeping
changed df name, n_digits info
Browse files
app.py
CHANGED
@@ -160,10 +160,14 @@ with gr.Blocks(title=title, theme=theme) as demo:
|
|
160 |
gr.Markdown("As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth.")
|
161 |
gr.Markdown("Cluster quality metrics evaluated (see [Clustering performance evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) \
|
162 |
for definitions and discussions of the metrics):")
|
|
|
|
|
|
|
|
|
163 |
|
164 |
with gr.Row():
|
165 |
with gr.Column(scale=0.5):
|
166 |
-
kmeans_n_digit = gr.Slider(minimum=2, maximum=10, label="KMeans n_digits",
|
167 |
random_n_digit = gr.Slider(minimum=2, maximum=10, label="Random n_digits", step=1, value=10)
|
168 |
pca_n_digit = gr.Slider(minimum=2, maximum=10, label="PCA n_digits",step=1, value=10)
|
169 |
|
@@ -172,10 +176,8 @@ with gr.Blocks(title=title, theme=theme) as demo:
|
|
172 |
with gr.Column(scale=0.5):
|
173 |
sample_df = pd.DataFrame(np.zeros((9,4)),columns=['metrics', 'k-means++', 'random', 'PCA-based'])
|
174 |
|
175 |
-
output = gr.Dataframe(sample_df, label="
|
176 |
-
|
177 |
|
178 |
-
|
179 |
with gr.Row():
|
180 |
sub_btn = gr.Button("Submit")
|
181 |
sub_btn.click(fn=do_submit, inputs=[kmeans_n_digit,random_n_digit, pca_n_digit], outputs=[plt_out, output])
|
|
|
160 |
gr.Markdown("As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth.")
|
161 |
gr.Markdown("Cluster quality metrics evaluated (see [Clustering performance evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) \
|
162 |
for definitions and discussions of the metrics):")
|
163 |
+
gr.Markdown("---")
|
164 |
+
gr.Markdown(" We will be utilizing [digits](https://huggingface.co/datasets/sklearn-docs/digits) dataset. This dataset contains handwritten digits from 0 to 9. \
|
165 |
+
In the context of clustering, one would like to group images such that the handwritten digits on the image are the same.")
|
166 |
+
|
167 |
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=0.5):
|
170 |
+
kmeans_n_digit = gr.Slider(minimum=2, maximum=10, label="KMeans n_digits", info="n_digits is number of handwritten digits" , step=1, value=10)
|
171 |
random_n_digit = gr.Slider(minimum=2, maximum=10, label="Random n_digits", step=1, value=10)
|
172 |
pca_n_digit = gr.Slider(minimum=2, maximum=10, label="PCA n_digits",step=1, value=10)
|
173 |
|
|
|
176 |
with gr.Column(scale=0.5):
|
177 |
sample_df = pd.DataFrame(np.zeros((9,4)),columns=['metrics', 'k-means++', 'random', 'PCA-based'])
|
178 |
|
179 |
+
output = gr.Dataframe(sample_df, label="Clustering Metrics")
|
|
|
180 |
|
|
|
181 |
with gr.Row():
|
182 |
sub_btn = gr.Button("Submit")
|
183 |
sub_btn.click(fn=do_submit, inputs=[kmeans_n_digit,random_n_digit, pca_n_digit], outputs=[plt_out, output])
|