rashmi commited on
Commit
d4a6bc7
·
1 Parent(s): 26de8ff

changed df name, n_digits info

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -160,10 +160,14 @@ with gr.Blocks(title=title, theme=theme) as demo:
160
  gr.Markdown("As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth.")
161
  gr.Markdown("Cluster quality metrics evaluated (see [Clustering performance evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) \
162
  for definitions and discussions of the metrics):")
 
 
 
 
163
 
164
  with gr.Row():
165
  with gr.Column(scale=0.5):
166
- kmeans_n_digit = gr.Slider(minimum=2, maximum=10, label="KMeans n_digits", step=1, value=10)
167
  random_n_digit = gr.Slider(minimum=2, maximum=10, label="Random n_digits", step=1, value=10)
168
  pca_n_digit = gr.Slider(minimum=2, maximum=10, label="PCA n_digits",step=1, value=10)
169
 
@@ -172,10 +176,8 @@ with gr.Blocks(title=title, theme=theme) as demo:
172
  with gr.Column(scale=0.5):
173
  sample_df = pd.DataFrame(np.zeros((9,4)),columns=['metrics', 'k-means++', 'random', 'PCA-based'])
174
 
175
- output = gr.Dataframe(sample_df, label="Output Table")
176
-
177
 
178
-
179
  with gr.Row():
180
  sub_btn = gr.Button("Submit")
181
  sub_btn.click(fn=do_submit, inputs=[kmeans_n_digit,random_n_digit, pca_n_digit], outputs=[plt_out, output])
 
160
  gr.Markdown("As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth.")
161
  gr.Markdown("Cluster quality metrics evaluated (see [Clustering performance evaluation](https://scikit-learn.org/stable/modules/clustering.html#clustering-evaluation) \
162
  for definitions and discussions of the metrics):")
163
+ gr.Markdown("---")
164
+ gr.Markdown(" We will be utilizing [digits](https://huggingface.co/datasets/sklearn-docs/digits) dataset. This dataset contains handwritten digits from 0 to 9. \
165
+ In the context of clustering, one would like to group images such that the handwritten digits on the image are the same.")
166
+
167
 
168
  with gr.Row():
169
  with gr.Column(scale=0.5):
170
+ kmeans_n_digit = gr.Slider(minimum=2, maximum=10, label="KMeans n_digits", info="n_digits is number of handwritten digits" , step=1, value=10)
171
  random_n_digit = gr.Slider(minimum=2, maximum=10, label="Random n_digits", step=1, value=10)
172
  pca_n_digit = gr.Slider(minimum=2, maximum=10, label="PCA n_digits",step=1, value=10)
173
 
 
176
  with gr.Column(scale=0.5):
177
  sample_df = pd.DataFrame(np.zeros((9,4)),columns=['metrics', 'k-means++', 'random', 'PCA-based'])
178
 
179
+ output = gr.Dataframe(sample_df, label="Clustering Metrics")
 
180
 
 
181
  with gr.Row():
182
  sub_btn = gr.Button("Submit")
183
  sub_btn.click(fn=do_submit, inputs=[kmeans_n_digit,random_n_digit, pca_n_digit], outputs=[plt_out, output])