Commit
·
d79693f
1
Parent(s):
2976bfe
App gradio
Browse files- app.py +240 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.express as px
|
7 |
+
from sklearn.datasets import fetch_20newsgroups
|
8 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
+
from sklearn.model_selection import RandomizedSearchCV
|
10 |
+
from sklearn.naive_bayes import ComplementNB
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
|
13 |
+
CATEGORIES = [
|
14 |
+
"alt.atheism",
|
15 |
+
"comp.graphics",
|
16 |
+
"comp.os.ms-windows.misc",
|
17 |
+
"comp.sys.ibm.pc.hardware",
|
18 |
+
"comp.sys.mac.hardware",
|
19 |
+
"comp.windows.x",
|
20 |
+
"misc.forsale",
|
21 |
+
"rec.autos",
|
22 |
+
"rec.motorcycles",
|
23 |
+
"rec.sport.baseball",
|
24 |
+
"rec.sport.hockey",
|
25 |
+
"sci.crypt",
|
26 |
+
"sci.electronics",
|
27 |
+
"sci.med",
|
28 |
+
"sci.space",
|
29 |
+
"soc.religion.christian",
|
30 |
+
"talk.politics.guns",
|
31 |
+
"talk.politics.mideast",
|
32 |
+
"talk.politics.misc",
|
33 |
+
"talk.religion.misc",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
PARAMETER_GRID = {
|
38 |
+
"vect__max_df": (0.2, 0.4, 0.6, 0.8, 1.0),
|
39 |
+
"vect__min_df": (1, 3, 5, 10),
|
40 |
+
"vect__ngram_range": ((1, 1), (1, 2)), # unigrams or bigrams
|
41 |
+
"vect__norm": ("l1", "l2"),
|
42 |
+
"clf__alpha": np.logspace(-6, 6, 13),
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def shorten_param(param_name):
|
47 |
+
"""Remove components' prefixes in param_name."""
|
48 |
+
if "__" in param_name:
|
49 |
+
return param_name.rsplit("__", 1)[1]
|
50 |
+
return param_name
|
51 |
+
|
52 |
+
|
53 |
+
def train_model(categories):
|
54 |
+
pipeline = Pipeline(
|
55 |
+
[
|
56 |
+
("vect", TfidfVectorizer()),
|
57 |
+
("clf", ComplementNB()),
|
58 |
+
]
|
59 |
+
)
|
60 |
+
|
61 |
+
data_train = fetch_20newsgroups(
|
62 |
+
subset="train",
|
63 |
+
categories=categories,
|
64 |
+
shuffle=True,
|
65 |
+
random_state=42,
|
66 |
+
remove=("headers", "footers", "quotes"),
|
67 |
+
)
|
68 |
+
|
69 |
+
data_test = fetch_20newsgroups(
|
70 |
+
subset="test",
|
71 |
+
categories=categories,
|
72 |
+
shuffle=True,
|
73 |
+
random_state=42,
|
74 |
+
remove=("headers", "footers", "quotes"),
|
75 |
+
)
|
76 |
+
|
77 |
+
pipeline = Pipeline(
|
78 |
+
[
|
79 |
+
("vect", TfidfVectorizer()),
|
80 |
+
("clf", ComplementNB()),
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
+
random_search = RandomizedSearchCV(
|
85 |
+
estimator=pipeline,
|
86 |
+
param_distributions=PARAMETER_GRID,
|
87 |
+
n_iter=40,
|
88 |
+
random_state=0,
|
89 |
+
n_jobs=2,
|
90 |
+
verbose=1,
|
91 |
+
)
|
92 |
+
|
93 |
+
random_search.fit(data_train.data, data_train.target)
|
94 |
+
best_parameters = random_search.best_estimator_.get_params()
|
95 |
+
|
96 |
+
test_accuracy = random_search.score(data_test.data, data_test.target)
|
97 |
+
|
98 |
+
cv_results = pd.DataFrame(random_search.cv_results_)
|
99 |
+
cv_results = cv_results.rename(shorten_param, axis=1)
|
100 |
+
|
101 |
+
param_names = [shorten_param(name) for name in PARAMETER_GRID.keys()]
|
102 |
+
labels = {
|
103 |
+
"mean_score_time": "CV Score time (s)",
|
104 |
+
"mean_test_score": "CV score (accuracy)",
|
105 |
+
}
|
106 |
+
fig = px.scatter(
|
107 |
+
cv_results,
|
108 |
+
x="mean_score_time",
|
109 |
+
y="mean_test_score",
|
110 |
+
error_x="std_score_time",
|
111 |
+
error_y="std_test_score",
|
112 |
+
hover_data=param_names,
|
113 |
+
labels=labels,
|
114 |
+
)
|
115 |
+
fig.update_layout(
|
116 |
+
title={
|
117 |
+
"text": "trade-off between scoring time and mean test score",
|
118 |
+
"y": 0.95,
|
119 |
+
"x": 0.5,
|
120 |
+
"xanchor": "center",
|
121 |
+
"yanchor": "top",
|
122 |
+
}
|
123 |
+
)
|
124 |
+
|
125 |
+
column_results = param_names + ["mean_test_score", "mean_score_time"]
|
126 |
+
|
127 |
+
transform_funcs = dict.fromkeys(column_results, lambda x: x)
|
128 |
+
# Using a logarithmic scale for alpha
|
129 |
+
transform_funcs["alpha"] = math.log10
|
130 |
+
# L1 norms are mapped to index 1, and L2 norms to index 2
|
131 |
+
transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
|
132 |
+
# Unigrams are mapped to index 1 and bigrams to index 2
|
133 |
+
transform_funcs["ngram_range"] = lambda x: x[1]
|
134 |
+
|
135 |
+
fig2 = px.parallel_coordinates(
|
136 |
+
cv_results[column_results].apply(transform_funcs),
|
137 |
+
color="mean_test_score",
|
138 |
+
color_continuous_scale=px.colors.sequential.Viridis_r,
|
139 |
+
labels=labels,
|
140 |
+
)
|
141 |
+
fig2.update_layout(
|
142 |
+
title={
|
143 |
+
"text": "Parallel coordinates plot of text classifier pipeline",
|
144 |
+
"y": 0.99,
|
145 |
+
"x": 0.5,
|
146 |
+
"xanchor": "center",
|
147 |
+
"yanchor": "top",
|
148 |
+
}
|
149 |
+
)
|
150 |
+
|
151 |
+
return fig, fig2, best_parameters, test_accuracy
|
152 |
+
|
153 |
+
|
154 |
+
DESCRIPTION_PART1 = [
|
155 |
+
"The dataset used in this example is",
|
156 |
+
"[The 20 newsgroups text dataset](https://scikit-learn.org/stable/datasets/real_world.html#newsgroups-dataset)",
|
157 |
+
"which will be automatically downloaded, cached and reused for the document classification example.",
|
158 |
+
]
|
159 |
+
|
160 |
+
DESCRIPTION_PART2 = [
|
161 |
+
"In this example, we tune the hyperparameters of",
|
162 |
+
"a particular classifier using a",
|
163 |
+
"[RandomizedSearchCV](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV).",
|
164 |
+
"For a demo on the performance of some other classifiers, see the",
|
165 |
+
"[Classification of text documents using sparse features](https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py) notebook.",
|
166 |
+
]
|
167 |
+
|
168 |
+
AUTHOR = """
|
169 |
+
Created by [@dominguesm](https://huggingface.co/dominguesm) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html)
|
170 |
+
"""
|
171 |
+
|
172 |
+
|
173 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
gr.Markdown("# Sample pipeline for text feature extraction and evaluation")
|
177 |
+
gr.Markdown(" ".join(DESCRIPTION_PART1))
|
178 |
+
gr.Markdown(" ".join(DESCRIPTION_PART2))
|
179 |
+
gr.Markdown(AUTHOR)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
gr.Markdown("""## CATEGORY SELECTION""")
|
184 |
+
drop_categories = gr.Dropdown(
|
185 |
+
CATEGORIES,
|
186 |
+
value=["alt.atheism", "talk.religion.misc"],
|
187 |
+
multiselect=True,
|
188 |
+
label="Categories",
|
189 |
+
info="Select the categories you want to train on.",
|
190 |
+
max_choices=2,
|
191 |
+
interactive=True,
|
192 |
+
)
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column():
|
195 |
+
gr.Markdown(
|
196 |
+
"""
|
197 |
+
## PARAMETERS GRID
|
198 |
+
```python
|
199 |
+
{
|
200 |
+
'clf__alpha': array(
|
201 |
+
[1.e-06, 1.e-05, 1.e-04,...]
|
202 |
+
),
|
203 |
+
'vect__max_df': (0.2, 0.4, 0.6, 0.8, 1.0),
|
204 |
+
'vect__min_df': (1, 3, 5, 10),
|
205 |
+
'vect__ngram_range': ((1, 1), (1, 2)),
|
206 |
+
'vect__norm': ('l1', 'l2')
|
207 |
+
}
|
208 |
+
```
|
209 |
+
## MODEL PIPELINE
|
210 |
+
```python
|
211 |
+
pipeline = Pipeline(
|
212 |
+
[
|
213 |
+
("vect", TfidfVectorizer()),
|
214 |
+
("clf", ComplementNB()),
|
215 |
+
]
|
216 |
+
)
|
217 |
+
```
|
218 |
+
"""
|
219 |
+
)
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
gr.Markdown("""## TRAINING""")
|
223 |
+
with gr.Row():
|
224 |
+
brn_train = gr.Button("Train").style(container=False)
|
225 |
+
|
226 |
+
gr.Markdown("## RESULTS")
|
227 |
+
with gr.Row():
|
228 |
+
best_parameters = gr.Textbox(label="Best parameters")
|
229 |
+
test_accuracy = gr.Textbox(label="Test accuracy")
|
230 |
+
|
231 |
+
plot_trade = gr.Plot(label="")
|
232 |
+
plot_coordinates = gr.Plot(label="")
|
233 |
+
|
234 |
+
brn_train.click(
|
235 |
+
train_model,
|
236 |
+
[drop_categories],
|
237 |
+
[plot_trade, plot_coordinates, best_parameters, test_accuracy],
|
238 |
+
)
|
239 |
+
|
240 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
scikit-learn
|
3 |
+
plotly
|
4 |
+
matplotlib
|
5 |
+
pandas
|