File size: 9,271 Bytes
f3daba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Copyright (C) 2019 NVIDIA Corporation.  All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""

import os
import sys
import torch
import pickle
import argparse
import sstan_models
import utils as util


class BaseOptions():
    def __init__(self):
        self.initialized = False

    def initialize(self, parser):
        # experiment specifics
        parser.add_argument('--name', type=str, default='multimodal_artworks', help='name of the experiment. It decides where to store samples and sstan_models')

        parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0  0,1,2, 0,2. use -1 for CPU')
        parser.add_argument('--checkpoints_dir', type=str, default='./seg2art/checkpoints', help='sstan_models are saved here')
        parser.add_argument('--model', type=str, default='pix2pix', help='which model to use')
        parser.add_argument('--norm_G', type=str, default='spectralinstance', help='instance normalization or batch normalization')
        parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
        parser.add_argument('--norm_E', type=str, default='spectralinstance', help='instance normalization or batch normalization')
        parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc')

        # input/output sizes
        parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
        parser.add_argument('--preprocess_mode', type=str, default='scale_width_and_crop', help='scaling and cropping of images at load time.', choices=("resize_and_crop", "crop", "scale_width", "scale_width_and_crop", "scale_shortside", "scale_shortside_and_crop", "fixed", "none"))
        parser.add_argument('--load_size', type=int, default=512, help='Scale images to this size. The final image will be cropped to --crop_size.')
        parser.add_argument('--crop_size', type=int, default=512, help='Crop to the width of crop_size (after initially scaling the images to load_size.)')
        parser.add_argument('--aspect_ratio', type=float, default=1.0, help='The ratio width/height. The final height of the load image will be crop_size/aspect_ratio')
        parser.add_argument('--label_nc', type=int, default=16, help='# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.')
        parser.add_argument('--contain_dontcare_label', action='store_true', help='if the label map contains dontcare label (dontcare=255)')
        parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')

        # for setting inputs
        parser.add_argument('--dataroot', type=str, default='./datasets/cityscapes/')
        parser.add_argument('--dataset_mode', type=str, default='custom')
        parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
        parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation')
        parser.add_argument('--nThreads', default=0, type=int, help='# threads for loading data')
        parser.add_argument('--max_dataset_size', type=int, default=sys.maxsize, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
        parser.add_argument('--load_from_opt_file', action='store_true', help='load the options from checkpoints and use that as default')
        parser.add_argument('--cache_filelist_write', action='store_true', help='saves the current filelist into a text file, so that it loads faster')
        parser.add_argument('--cache_filelist_read', action='store_true', help='reads from the file list cache')

        # for displays
        parser.add_argument('--display_winsize', type=int, default=400, help='display window size')

        # for generator
        parser.add_argument('--netG', type=str, default='spade', help='selects model to use for netG (pix2pixhd | spade)')
        parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
        parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
        parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
        parser.add_argument('--z_dim', type=int, default=256,
                            help="dimension of the latent z vector")

        # for instance-wise features
        parser.add_argument('--no_instance', action='store_true', help='if specified, do *not* add instance map as input')
        parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer')
        parser.add_argument('--use_vae', action='store_true', help='enable training with an image encoder.')

        self.initialized = True
        return parser

    def gather_options(self):
        # initialize parser with basic options
        if not self.initialized:
            parser = argparse.ArgumentParser(
                formatter_class=argparse.ArgumentDefaultsHelpFormatter)
            parser = self.initialize(parser)

        # get the basic options
        opt, unknown = parser.parse_known_args()

        # modify model-related parser options
        model_name = opt.model
        model_option_setter = sstan_models.get_option_setter(model_name)
        parser = model_option_setter(parser, self.isTrain)


        # # modify dataset-related parser options
        # dataset_mode = opt.dataset_mode
        # dataset_option_setter = data.get_option_setter(dataset_mode)
        # parser = dataset_option_setter(parser, self.isTrain)

        # opt, unknown = parser.parse_known_args()

        # # if there is opt_file, load it.
        # # The previous default options will be overwritten
        # if opt.load_from_opt_file:
        #     parser = self.update_options_from_file(parser, opt)

        opt = parser.parse_args()

        opt.contain_dontcare_label = False
        opt.no_instance = True
        opt.use_vae = False

        self.parser = parser
        return opt

    def print_options(self, opt):
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

    def option_file_path(self, opt, makedir=False):
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        if makedir:
            util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, 'opt')
        return file_name

    def save_options(self, opt):
        file_name = self.option_file_path(opt, makedir=True)
        with open(file_name + '.txt', 'wt') as opt_file:
            for k, v in sorted(vars(opt).items()):
                comment = ''
                default = self.parser.get_default(k)
                if v != default:
                    comment = '\t[default: %s]' % str(default)
                opt_file.write('{:>25}: {:<30}{}\n'.format(str(k), str(v), comment))

        with open(file_name + '.pkl', 'wb') as opt_file:
            pickle.dump(opt, opt_file)

    def update_options_from_file(self, parser, opt):
        new_opt = self.load_options(opt)
        for k, v in sorted(vars(opt).items()):
            if hasattr(new_opt, k) and v != getattr(new_opt, k):
                new_val = getattr(new_opt, k)
                parser.set_defaults(**{k: new_val})
        return parser

    def load_options(self, opt):
        file_name = self.option_file_path(opt, makedir=False)
        new_opt = pickle.load(open(file_name + '.pkl', 'rb'))
        return new_opt

    def parse(self, save=False):

        opt = self.gather_options()
        opt.isTrain = self.isTrain   # train or test

        #self.print_options(opt)
        if opt.isTrain:
            self.save_options(opt)

        # Set semantic_nc based on the option.
        # This will be convenient in many places
        opt.semantic_nc = opt.label_nc + \
            (1 if opt.contain_dontcare_label else 0) + \
            (0 if opt.no_instance else 1)

        # set gpu ids
        str_ids = opt.gpu_ids.split(',')
        opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                opt.gpu_ids.append(id)
        opt.gpu_ids = [] if torch.cuda.device_count() == 0 else opt.gpu_ids
        if len(opt.gpu_ids) > 0:
            torch.cuda.set_device(opt.gpu_ids[0])

        assert len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0, \
            "Batch size %d is wrong. It must be a multiple of # GPUs %d." \
            % (opt.batchSize, len(opt.gpu_ids))

        self.opt = opt
        return self.opt