sky24h's picture
init_commit
f3daba8
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import re
import importlib
import torch
from argparse import Namespace
import numpy as np
from PIL import Image
import os
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
return image_numpy
if image_tensor.dim() == 4:
# transform each image in the batch
images_np = []
for b in range(image_tensor.size(0)):
one_image = image_tensor[b]
one_image_np = tensor2im(one_image)
images_np.append(one_image_np.reshape(1, *one_image_np.shape))
images_np = np.concatenate(images_np, axis=0)
return images_np
if image_tensor.dim() == 2:
image_tensor = image_tensor.unsqueeze(0)
image_numpy = image_tensor.detach().cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1:
image_numpy = image_numpy[:, :, 0]
return image_numpy.astype(imtype)
# Converts a one-hot tensor into a colorful label map
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False):
if label_tensor.dim() == 4:
# transform each image in the batch
images_np = []
for b in range(label_tensor.size(0)):
one_image = label_tensor[b]
one_image_np = tensor2label(one_image, n_label, imtype)
images_np.append(one_image_np.reshape(1, *one_image_np.shape))
images_np = np.concatenate(images_np, axis=0)
if tile:
images_tiled = tile_images(images_np)
return images_tiled
else:
images_np = images_np[0]
return images_np
if label_tensor.dim() == 1:
return np.zeros((64, 64, 3), dtype=np.uint8)
if n_label == 0:
return tensor2im(label_tensor, imtype)
label_tensor = label_tensor.cpu().float()
if label_tensor.size()[0] > 1:
label_tensor = label_tensor.max(0, keepdim=True)[1]
label_tensor = Colorize(n_label)(label_tensor)
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0))
result = label_numpy.astype(imtype)
return result
def save_image(image_numpy, image_path, create_dir=False):
if create_dir:
os.makedirs(os.path.dirname(image_path), exist_ok=True)
if len(image_numpy.shape) == 2:
image_numpy = np.expand_dims(image_numpy, axis=2)
if image_numpy.shape[2] == 1:
image_numpy = np.repeat(image_numpy, 3, 2)
image_pil = Image.fromarray(image_numpy)
# save to png
image_pil.save(image_path.replace('.jpg', '.png'))
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
'''
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
'''
return [atoi(c) for c in re.split('(\d+)', text)]
def natural_sort(items):
items.sort(key=natural_keys)
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def find_class_in_module(target_cls_name, module):
target_cls_name = target_cls_name.replace('_', '').lower()
clslib = importlib.import_module(module)
cls = None
for name, clsobj in clslib.__dict__.items():
if name.lower() == target_cls_name:
cls = clsobj
if cls is None:
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name))
exit(0)
return cls
def save_network(net, label, epoch, opt):
save_filename = '%s_net_%s.pth' % (epoch, label)
save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename)
torch.save(net.cpu().state_dict(), save_path)
if len(opt.gpu_ids) and torch.cuda.is_available():
net.cuda()
def load_network(net, label, epoch, opt):
save_filename = '%s_net_%s.pth' % (epoch, label)
save_dir = os.path.join(opt.checkpoints_dir, opt.name)
save_path = os.path.join(save_dir, save_filename)
weights = torch.load(save_path)
net.load_state_dict(weights, strict=False)#
return net