|
""" |
|
Copyright (C) 2019 NVIDIA Corporation. All rights reserved. |
|
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). |
|
""" |
|
|
|
import re |
|
import importlib |
|
import torch |
|
from argparse import Namespace |
|
import numpy as np |
|
from PIL import Image |
|
import os |
|
|
|
|
|
|
|
|
|
def tensor2im(image_tensor, imtype=np.uint8, normalize=True, tile=False): |
|
if isinstance(image_tensor, list): |
|
image_numpy = [] |
|
for i in range(len(image_tensor)): |
|
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) |
|
return image_numpy |
|
|
|
if image_tensor.dim() == 4: |
|
|
|
images_np = [] |
|
for b in range(image_tensor.size(0)): |
|
one_image = image_tensor[b] |
|
one_image_np = tensor2im(one_image) |
|
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) |
|
images_np = np.concatenate(images_np, axis=0) |
|
return images_np |
|
|
|
if image_tensor.dim() == 2: |
|
image_tensor = image_tensor.unsqueeze(0) |
|
image_numpy = image_tensor.detach().cpu().float().numpy() |
|
if normalize: |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 |
|
else: |
|
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 |
|
image_numpy = np.clip(image_numpy, 0, 255) |
|
if image_numpy.shape[2] == 1: |
|
image_numpy = image_numpy[:, :, 0] |
|
return image_numpy.astype(imtype) |
|
|
|
|
|
|
|
def tensor2label(label_tensor, n_label, imtype=np.uint8, tile=False): |
|
if label_tensor.dim() == 4: |
|
|
|
images_np = [] |
|
for b in range(label_tensor.size(0)): |
|
one_image = label_tensor[b] |
|
one_image_np = tensor2label(one_image, n_label, imtype) |
|
images_np.append(one_image_np.reshape(1, *one_image_np.shape)) |
|
images_np = np.concatenate(images_np, axis=0) |
|
if tile: |
|
images_tiled = tile_images(images_np) |
|
return images_tiled |
|
else: |
|
images_np = images_np[0] |
|
return images_np |
|
|
|
if label_tensor.dim() == 1: |
|
return np.zeros((64, 64, 3), dtype=np.uint8) |
|
if n_label == 0: |
|
return tensor2im(label_tensor, imtype) |
|
label_tensor = label_tensor.cpu().float() |
|
if label_tensor.size()[0] > 1: |
|
label_tensor = label_tensor.max(0, keepdim=True)[1] |
|
label_tensor = Colorize(n_label)(label_tensor) |
|
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) |
|
result = label_numpy.astype(imtype) |
|
return result |
|
|
|
|
|
def save_image(image_numpy, image_path, create_dir=False): |
|
if create_dir: |
|
os.makedirs(os.path.dirname(image_path), exist_ok=True) |
|
if len(image_numpy.shape) == 2: |
|
image_numpy = np.expand_dims(image_numpy, axis=2) |
|
if image_numpy.shape[2] == 1: |
|
image_numpy = np.repeat(image_numpy, 3, 2) |
|
image_pil = Image.fromarray(image_numpy) |
|
|
|
|
|
image_pil.save(image_path.replace('.jpg', '.png')) |
|
|
|
|
|
def mkdirs(paths): |
|
if isinstance(paths, list) and not isinstance(paths, str): |
|
for path in paths: |
|
mkdir(path) |
|
else: |
|
mkdir(paths) |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def atoi(text): |
|
return int(text) if text.isdigit() else text |
|
|
|
|
|
def natural_keys(text): |
|
''' |
|
alist.sort(key=natural_keys) sorts in human order |
|
http://nedbatchelder.com/blog/200712/human_sorting.html |
|
(See Toothy's implementation in the comments) |
|
''' |
|
return [atoi(c) for c in re.split('(\d+)', text)] |
|
|
|
|
|
def natural_sort(items): |
|
items.sort(key=natural_keys) |
|
|
|
|
|
def str2bool(v): |
|
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
|
|
|
def find_class_in_module(target_cls_name, module): |
|
target_cls_name = target_cls_name.replace('_', '').lower() |
|
clslib = importlib.import_module(module) |
|
cls = None |
|
for name, clsobj in clslib.__dict__.items(): |
|
if name.lower() == target_cls_name: |
|
cls = clsobj |
|
|
|
if cls is None: |
|
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) |
|
exit(0) |
|
|
|
return cls |
|
|
|
|
|
def save_network(net, label, epoch, opt): |
|
save_filename = '%s_net_%s.pth' % (epoch, label) |
|
save_path = os.path.join(opt.checkpoints_dir, opt.name, save_filename) |
|
torch.save(net.cpu().state_dict(), save_path) |
|
if len(opt.gpu_ids) and torch.cuda.is_available(): |
|
net.cuda() |
|
|
|
|
|
def load_network(net, label, epoch, opt): |
|
save_filename = '%s_net_%s.pth' % (epoch, label) |
|
save_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
save_path = os.path.join(save_dir, save_filename) |
|
weights = torch.load(save_path) |
|
net.load_state_dict(weights, strict=False) |
|
return net |
|
|