|
""" |
|
Copyright (C) 2019 NVIDIA Corporation. All rights reserved. |
|
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). |
|
""" |
|
|
|
import os |
|
import sys |
|
import torch |
|
import pickle |
|
import argparse |
|
import sstan_models |
|
import utils as util |
|
|
|
|
|
class BaseOptions(): |
|
def __init__(self): |
|
self.initialized = False |
|
|
|
def initialize(self, parser): |
|
|
|
parser.add_argument('--name', type=str, default='multimodal_artworks', help='name of the experiment. It decides where to store samples and sstan_models') |
|
|
|
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') |
|
parser.add_argument('--checkpoints_dir', type=str, default='./seg2art/checkpoints', help='sstan_models are saved here') |
|
parser.add_argument('--model', type=str, default='pix2pix', help='which model to use') |
|
parser.add_argument('--norm_G', type=str, default='spectralinstance', help='instance normalization or batch normalization') |
|
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization') |
|
parser.add_argument('--norm_E', type=str, default='spectralinstance', help='instance normalization or batch normalization') |
|
parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') |
|
|
|
|
|
parser.add_argument('--batchSize', type=int, default=1, help='input batch size') |
|
parser.add_argument('--preprocess_mode', type=str, default='scale_width_and_crop', help='scaling and cropping of images at load time.', choices=("resize_and_crop", "crop", "scale_width", "scale_width_and_crop", "scale_shortside", "scale_shortside_and_crop", "fixed", "none")) |
|
parser.add_argument('--load_size', type=int, default=512, help='Scale images to this size. The final image will be cropped to --crop_size.') |
|
parser.add_argument('--crop_size', type=int, default=512, help='Crop to the width of crop_size (after initially scaling the images to load_size.)') |
|
parser.add_argument('--aspect_ratio', type=float, default=1.0, help='The ratio width/height. The final height of the load image will be crop_size/aspect_ratio') |
|
parser.add_argument('--label_nc', type=int, default=16, help='# of input label classes without unknown class. If you have unknown class as class label, specify --contain_dopntcare_label.') |
|
parser.add_argument('--contain_dontcare_label', action='store_true', help='if the label map contains dontcare label (dontcare=255)') |
|
parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels') |
|
|
|
|
|
parser.add_argument('--dataroot', type=str, default='./datasets/cityscapes/') |
|
parser.add_argument('--dataset_mode', type=str, default='custom') |
|
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') |
|
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation') |
|
parser.add_argument('--nThreads', default=0, type=int, help='# threads for loading data') |
|
parser.add_argument('--max_dataset_size', type=int, default=sys.maxsize, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') |
|
parser.add_argument('--load_from_opt_file', action='store_true', help='load the options from checkpoints and use that as default') |
|
parser.add_argument('--cache_filelist_write', action='store_true', help='saves the current filelist into a text file, so that it loads faster') |
|
parser.add_argument('--cache_filelist_read', action='store_true', help='reads from the file list cache') |
|
|
|
|
|
parser.add_argument('--display_winsize', type=int, default=400, help='display window size') |
|
|
|
|
|
parser.add_argument('--netG', type=str, default='spade', help='selects model to use for netG (pix2pixhd | spade)') |
|
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer') |
|
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]') |
|
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution') |
|
parser.add_argument('--z_dim', type=int, default=256, |
|
help="dimension of the latent z vector") |
|
|
|
|
|
parser.add_argument('--no_instance', action='store_true', help='if specified, do *not* add instance map as input') |
|
parser.add_argument('--nef', type=int, default=16, help='# of encoder filters in the first conv layer') |
|
parser.add_argument('--use_vae', action='store_true', help='enable training with an image encoder.') |
|
|
|
self.initialized = True |
|
return parser |
|
|
|
def gather_options(self): |
|
|
|
if not self.initialized: |
|
parser = argparse.ArgumentParser( |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser = self.initialize(parser) |
|
|
|
|
|
opt, unknown = parser.parse_known_args() |
|
|
|
|
|
model_name = opt.model |
|
model_option_setter = sstan_models.get_option_setter(model_name) |
|
parser = model_option_setter(parser, self.isTrain) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
opt = parser.parse_args() |
|
|
|
opt.contain_dontcare_label = False |
|
opt.no_instance = True |
|
opt.use_vae = False |
|
|
|
self.parser = parser |
|
return opt |
|
|
|
def print_options(self, opt): |
|
message = '' |
|
message += '----------------- Options ---------------\n' |
|
for k, v in sorted(vars(opt).items()): |
|
comment = '' |
|
default = self.parser.get_default(k) |
|
if v != default: |
|
comment = '\t[default: %s]' % str(default) |
|
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) |
|
message += '----------------- End -------------------' |
|
print(message) |
|
|
|
def option_file_path(self, opt, makedir=False): |
|
expr_dir = os.path.join(opt.checkpoints_dir, opt.name) |
|
if makedir: |
|
util.mkdirs(expr_dir) |
|
file_name = os.path.join(expr_dir, 'opt') |
|
return file_name |
|
|
|
def save_options(self, opt): |
|
file_name = self.option_file_path(opt, makedir=True) |
|
with open(file_name + '.txt', 'wt') as opt_file: |
|
for k, v in sorted(vars(opt).items()): |
|
comment = '' |
|
default = self.parser.get_default(k) |
|
if v != default: |
|
comment = '\t[default: %s]' % str(default) |
|
opt_file.write('{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)) |
|
|
|
with open(file_name + '.pkl', 'wb') as opt_file: |
|
pickle.dump(opt, opt_file) |
|
|
|
def update_options_from_file(self, parser, opt): |
|
new_opt = self.load_options(opt) |
|
for k, v in sorted(vars(opt).items()): |
|
if hasattr(new_opt, k) and v != getattr(new_opt, k): |
|
new_val = getattr(new_opt, k) |
|
parser.set_defaults(**{k: new_val}) |
|
return parser |
|
|
|
def load_options(self, opt): |
|
file_name = self.option_file_path(opt, makedir=False) |
|
new_opt = pickle.load(open(file_name + '.pkl', 'rb')) |
|
return new_opt |
|
|
|
def parse(self, save=False): |
|
|
|
opt = self.gather_options() |
|
opt.isTrain = self.isTrain |
|
|
|
|
|
if opt.isTrain: |
|
self.save_options(opt) |
|
|
|
|
|
|
|
opt.semantic_nc = opt.label_nc + \ |
|
(1 if opt.contain_dontcare_label else 0) + \ |
|
(0 if opt.no_instance else 1) |
|
|
|
|
|
str_ids = opt.gpu_ids.split(',') |
|
opt.gpu_ids = [] |
|
for str_id in str_ids: |
|
id = int(str_id) |
|
if id >= 0: |
|
opt.gpu_ids.append(id) |
|
opt.gpu_ids = [] if torch.cuda.device_count() == 0 else opt.gpu_ids |
|
if len(opt.gpu_ids) > 0: |
|
torch.cuda.set_device(opt.gpu_ids[0]) |
|
|
|
assert len(opt.gpu_ids) == 0 or opt.batchSize % len(opt.gpu_ids) == 0, \ |
|
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \ |
|
% (opt.batchSize, len(opt.gpu_ids)) |
|
|
|
self.opt = opt |
|
return self.opt |
|
|