Spaces:
Sleeping
Sleeping
init commit
Browse files- .gitattributes +1 -0
- .gitignore +160 -0
- README.md +4 -4
- app.py +54 -4
- checkpoints/unet/config.json +45 -0
- checkpoints/unet/diffusion_pytorch_model.fp16.bin +3 -0
- data/background.mp4 +3 -0
- data/puff.mp4 +3 -0
- data/trucks-race.mp4 +3 -0
- gradio_cached_examples/19/log.csv +4 -0
- gradio_cached_examples/19/output/2be6ecf324aed22bf7b6/Wooden-trucks-drive-on-a-racetrack.__15_1727813992.8895943.mp4 +3 -0
- gradio_cached_examples/19/output/d89cb02e15074188f8f6/A-Tiger-high-quality_a-cat-with-big-eyes-deformed_20_1727813741.3332028.mp4 +3 -0
- gradio_cached_examples/19/output/d9fa9e82120d2c0f1786/pointillism-painting-detailed__25_1727813866.2198303.mp4 +3 -0
- inference_utils.py +107 -0
- models/__init__.py +0 -0
- models/attention.py +563 -0
- models/pipeline_flatten.py +879 -0
- models/resnet.py +226 -0
- models/unet.py +461 -0
- models/unet_blocks.py +589 -0
- models/util.py +294 -0
- requirements.txt +26 -0
.gitattributes
CHANGED
@@ -17,6 +17,7 @@
|
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
|
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pickle filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pkl filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: FLATTEN
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: FLATTEN
|
3 |
+
emoji: 📽️
|
4 |
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -1,7 +1,57 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
+
from inference_utils import inference
|
4 |
|
|
|
|
|
5 |
|
6 |
+
@spaces.GPU(duration=120)
|
7 |
+
def send_to_model(source_video, prompt, neg_prompt, guidance_scale, video_length, old_qk):
|
8 |
+
return inference(prompt=prompt, neg_prompt=neg_prompt, guidance_scale=guidance_scale, video_length=video_length, video_path=source_video, old_qk=old_qk)
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == "__main__":
|
12 |
+
with gr.Blocks() as demo:
|
13 |
+
gr.HTML(
|
14 |
+
"""
|
15 |
+
<h1 style="text-align: center; font-size: 32px; font-family: 'Times New Roman', Times, serif;">
|
16 |
+
FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing
|
17 |
+
</h1>
|
18 |
+
<p style="text-align: center; font-size: 20px; font-family: 'Times New Roman', Times, serif;">
|
19 |
+
<a style="text-align: center; display:inline-block"
|
20 |
+
href="https://flatten-video-editing.github.io/">
|
21 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/paper-page-sm.svg#center"
|
22 |
+
alt="Paper Page">
|
23 |
+
</a>
|
24 |
+
<a style="text-align: center; display:inline-block" href="https://huggingface.co/spaces/sky24h/FLATTEN-unofficial?duplicate=true">
|
25 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center" alt="Duplicate Space">
|
26 |
+
</a>
|
27 |
+
</p>
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
gr.Interface(
|
31 |
+
fn=send_to_model,
|
32 |
+
inputs=[
|
33 |
+
gr.Video(value=None, label="Source Image"),
|
34 |
+
gr.Textbox(value="", label="Prompt"),
|
35 |
+
gr.Textbox(value="", label="Negative Prompt"),
|
36 |
+
gr.Slider(
|
37 |
+
value = 15,
|
38 |
+
minimum = 10,
|
39 |
+
maximum = 30,
|
40 |
+
step = 1,
|
41 |
+
label = "guidance_scale",
|
42 |
+
info = "The scale of the guidance field.",
|
43 |
+
),
|
44 |
+
gr.Textbox(value=16, label="Video Length", info="The length of the video, must be less than 16 frames in the online demo to avoid timeout. However, you can run the model locally to process longer videos."),
|
45 |
+
gr.Dropdown(value=0, choices=[0, 1], label="Choose Option", info="Select 0 or 1."),
|
46 |
+
],
|
47 |
+
outputs=[gr.Video(label="output", autoplay=True)],
|
48 |
+
allow_flagging="never",
|
49 |
+
description="This is an unofficial demo for the paper 'FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing'.",
|
50 |
+
examples=[
|
51 |
+
["./data/puff.mp4", "A Tiger, high quality", "a cat with big eyes, deformed", 20, 16, 0],
|
52 |
+
["./data/background.mp4", "pointillism painting, detailed", "", 25, 16, 1],
|
53 |
+
["./data/trucks-race.mp4", "Wooden trucks drive on a racetrack.", "", 15, 16, 1],
|
54 |
+
],
|
55 |
+
cache_examples=True,
|
56 |
+
)
|
57 |
+
demo.queue(max_size=10).launch()
|
checkpoints/unet/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.10.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"attention_head_dim": [
|
6 |
+
5,
|
7 |
+
10,
|
8 |
+
20,
|
9 |
+
20
|
10 |
+
],
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"cross_attention_dim": 1024,
|
19 |
+
"down_block_types": [
|
20 |
+
"CrossAttnDownBlock2D",
|
21 |
+
"CrossAttnDownBlock2D",
|
22 |
+
"CrossAttnDownBlock2D",
|
23 |
+
"DownBlock2D"
|
24 |
+
],
|
25 |
+
"downsample_padding": 1,
|
26 |
+
"dual_cross_attention": false,
|
27 |
+
"flip_sin_to_cos": true,
|
28 |
+
"freq_shift": 0,
|
29 |
+
"in_channels": 4,
|
30 |
+
"layers_per_block": 2,
|
31 |
+
"mid_block_scale_factor": 1,
|
32 |
+
"norm_eps": 1e-05,
|
33 |
+
"norm_num_groups": 32,
|
34 |
+
"num_class_embeds": null,
|
35 |
+
"only_cross_attention": false,
|
36 |
+
"out_channels": 4,
|
37 |
+
"sample_size": 64,
|
38 |
+
"up_block_types": [
|
39 |
+
"UpBlock2D",
|
40 |
+
"CrossAttnUpBlock2D",
|
41 |
+
"CrossAttnUpBlock2D",
|
42 |
+
"CrossAttnUpBlock2D"
|
43 |
+
],
|
44 |
+
"use_linear_projection": true
|
45 |
+
}
|
checkpoints/unet/diffusion_pytorch_model.fp16.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da861650fc7df96390abffcbb9bcf67b7c5566422fda5af9bc003605be65c5f3
|
3 |
+
size 1732107093
|
data/background.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a17a3627a373b49a377e27c2efc33da739e6114ee919cbf016305683a47dacf
|
3 |
+
size 207581
|
data/puff.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a730d21ba80ec72d8fd19cbf55b19372210f97e2a3005a3d424bec0c81c1c8e4
|
3 |
+
size 203311
|
data/trucks-race.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ee14a4157cb65432b147e2c3c63d07c49d9dc79ba3d1ee696d068d133b9beba
|
3 |
+
size 1232961
|
gradio_cached_examples/19/log.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output,flag,username,timestamp
|
2 |
+
"{""video"": {""path"": ""gradio_cached_examples/19/output/d89cb02e15074188f8f6/A-Tiger-high-quality_a-cat-with-big-eyes-deformed_20_1727813741.3332028.mp4"", ""url"": ""/file=/tmp/gradio/17794950654f68456a056c68191682fee58f63e5/A-Tiger-high-quality_a-cat-with-big-eyes-deformed_20_1727813741.3332028.mp4"", ""size"": null, ""orig_name"": ""A-Tiger,-high-quality_a-cat-with-big-eyes,-deformed_20_1727813741.3332028.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-10-01 20:15:41.884688
|
3 |
+
"{""video"": {""path"": ""gradio_cached_examples/19/output/d9fa9e82120d2c0f1786/pointillism-painting-detailed__25_1727813866.2198303.mp4"", ""url"": ""/file=/tmp/gradio/164e0b9a788d053c6e89e46accc931aa4ecc036d/pointillism-painting-detailed__25_1727813866.2198303.mp4"", ""size"": null, ""orig_name"": ""pointillism-painting,-detailed__25_1727813866.2198303.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-10-01 20:17:46.857907
|
4 |
+
"{""video"": {""path"": ""gradio_cached_examples/19/output/2be6ecf324aed22bf7b6/Wooden-trucks-drive-on-a-racetrack.__15_1727813992.8895943.mp4"", ""url"": ""/file=/tmp/gradio/76a9de37ebb4bb2027a17530fced1febf5100b0b/Wooden-trucks-drive-on-a-racetrack.__15_1727813992.8895943.mp4"", ""size"": null, ""orig_name"": ""Wooden-trucks-drive-on-a-racetrack.__15_1727813992.8895943.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}",,,2024-10-01 20:19:53.549070
|
gradio_cached_examples/19/output/2be6ecf324aed22bf7b6/Wooden-trucks-drive-on-a-racetrack.__15_1727813992.8895943.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc7f6ff21e460e91e5de667278b64b83bc706007b412a8d263709a30e3be8898
|
3 |
+
size 92054
|
gradio_cached_examples/19/output/d89cb02e15074188f8f6/A-Tiger-high-quality_a-cat-with-big-eyes-deformed_20_1727813741.3332028.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3746fd58911320cabcb611c7e311b21bdee0273ea5e9801a715cfd400428d37
|
3 |
+
size 273838
|
gradio_cached_examples/19/output/d9fa9e82120d2c0f1786/pointillism-painting-detailed__25_1727813866.2198303.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0395774a685b6e042d183c1d016771be4a79f1a1782a510e49099267ce24ebe1
|
3 |
+
size 701932
|
inference_utils.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import imageio
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
10 |
+
from diffusers import DDIMScheduler, AutoencoderKL, DDIMInverseScheduler
|
11 |
+
|
12 |
+
from models.pipeline_flatten import FlattenPipeline
|
13 |
+
from models.util import sample_trajectories
|
14 |
+
from models.unet import UNet3DConditionModel
|
15 |
+
|
16 |
+
|
17 |
+
def init_pipeline(device):
|
18 |
+
dtype = torch.float16
|
19 |
+
sd_path = "stabilityai/stable-diffusion-2-1-base"
|
20 |
+
UNET_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "checkpoints", "unet")
|
21 |
+
unet = UNet3DConditionModel.from_pretrained_2d(UNET_PATH, dtype=torch.float16)
|
22 |
+
# unet = UNet3DConditionModel.from_pretrained_2d(sd_path, subfolder="unet").to(dtype=torch.float16)
|
23 |
+
|
24 |
+
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(dtype=torch.float16)
|
25 |
+
tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer", dtype=dtype)
|
26 |
+
text_encoder = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder").to(dtype=torch.float16)
|
27 |
+
scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
28 |
+
inverse = DDIMInverseScheduler.from_pretrained(sd_path, subfolder="scheduler")
|
29 |
+
|
30 |
+
pipe = FlattenPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, inverse_scheduler=inverse)
|
31 |
+
pipe.enable_vae_slicing()
|
32 |
+
pipe.enable_xformers_memory_efficient_attention()
|
33 |
+
pipe.to(device)
|
34 |
+
return pipe
|
35 |
+
|
36 |
+
|
37 |
+
height = 512
|
38 |
+
width = 512
|
39 |
+
sample_steps = 50
|
40 |
+
inject_step = 40
|
41 |
+
|
42 |
+
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
43 |
+
pipe = init_pipeline(device)
|
44 |
+
|
45 |
+
|
46 |
+
def inference(
|
47 |
+
seed = 66,
|
48 |
+
prompt = None,
|
49 |
+
neg_prompt = "",
|
50 |
+
guidance_scale = 10.0,
|
51 |
+
video_length = 16,
|
52 |
+
video_path = None,
|
53 |
+
output_dir = None,
|
54 |
+
frame_rate = 1,
|
55 |
+
fps = 15,
|
56 |
+
old_qk = 0,
|
57 |
+
):
|
58 |
+
generator = torch.Generator(device=device)
|
59 |
+
generator.manual_seed(seed)
|
60 |
+
|
61 |
+
# read the source video
|
62 |
+
video_reader = imageio.get_reader(video_path, "ffmpeg")
|
63 |
+
video = []
|
64 |
+
for frame in video_reader:
|
65 |
+
if len(video) >= video_length:
|
66 |
+
break
|
67 |
+
video.append(cv2.resize(frame, (width, height))) # .transpose(2, 0, 1))
|
68 |
+
real_frames = [Image.fromarray(frame) for frame in video]
|
69 |
+
|
70 |
+
# compute optical flows and sample trajectories
|
71 |
+
trajectories = sample_trajectories(torch.tensor(np.array(video)).permute(0, 3, 1, 2), device)
|
72 |
+
torch.cuda.empty_cache()
|
73 |
+
|
74 |
+
for k in trajectories.keys():
|
75 |
+
trajectories[k] = trajectories[k].to(device)
|
76 |
+
sample = (pipe(
|
77 |
+
prompt,
|
78 |
+
video_length = video_length,
|
79 |
+
frames = real_frames,
|
80 |
+
num_inference_steps = sample_steps,
|
81 |
+
generator = generator,
|
82 |
+
guidance_scale = guidance_scale,
|
83 |
+
negative_prompt = neg_prompt,
|
84 |
+
width = width,
|
85 |
+
height = height,
|
86 |
+
trajs = trajectories,
|
87 |
+
output_dir = "tmp/",
|
88 |
+
inject_step = inject_step,
|
89 |
+
old_qk = old_qk,
|
90 |
+
).videos[0].permute(1, 2, 3, 0).cpu().numpy() * 255).astype(np.uint8)
|
91 |
+
temp_video_name = f"/tmp/{prompt}_{neg_prompt}_{str(guidance_scale)}_{time.time()}.mp4".replace(" ", "-")
|
92 |
+
video_writer = imageio.get_writer(temp_video_name, fps=fps)
|
93 |
+
for frame in sample:
|
94 |
+
video_writer.append_data(frame)
|
95 |
+
print(f"Saving video to {temp_video_name}, sample shape: {sample.shape}")
|
96 |
+
return temp_video_name
|
97 |
+
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
video_path = "./data/puff.mp4"
|
101 |
+
inference(
|
102 |
+
video_path = video_path,
|
103 |
+
prompt = "A Tiger, high quality",
|
104 |
+
neg_prompt = "a cat with big eyes, deformed",
|
105 |
+
guidance_scale = 20,
|
106 |
+
old_qk = 0,
|
107 |
+
)
|
models/__init__.py
ADDED
File without changes
|
models/attention.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional, Callable
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers import ModelMixin
|
11 |
+
from diffusers.utils import BaseOutput
|
12 |
+
from diffusers.utils.import_utils import is_xformers_available
|
13 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm
|
14 |
+
from diffusers.models.cross_attention import CrossAttention
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class Transformer3DModelOutput(BaseOutput):
|
19 |
+
sample: torch.FloatTensor
|
20 |
+
|
21 |
+
|
22 |
+
if is_xformers_available():
|
23 |
+
import xformers
|
24 |
+
import xformers.ops
|
25 |
+
else:
|
26 |
+
xformers = None
|
27 |
+
|
28 |
+
|
29 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
30 |
+
@register_to_config
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
num_attention_heads: int = 16,
|
34 |
+
attention_head_dim: int = 88,
|
35 |
+
in_channels: Optional[int] = None,
|
36 |
+
num_layers: int = 1,
|
37 |
+
dropout: float = 0.0,
|
38 |
+
norm_num_groups: int = 32,
|
39 |
+
cross_attention_dim: Optional[int] = None,
|
40 |
+
attention_bias: bool = False,
|
41 |
+
activation_fn: str = "geglu",
|
42 |
+
num_embeds_ada_norm: Optional[int] = None,
|
43 |
+
use_linear_projection: bool = False,
|
44 |
+
only_cross_attention: bool = False,
|
45 |
+
upcast_attention: bool = False,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.use_linear_projection = use_linear_projection
|
49 |
+
self.num_attention_heads = num_attention_heads
|
50 |
+
self.attention_head_dim = attention_head_dim
|
51 |
+
inner_dim = num_attention_heads * attention_head_dim
|
52 |
+
|
53 |
+
# Define input layers
|
54 |
+
self.in_channels = in_channels
|
55 |
+
|
56 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
57 |
+
if use_linear_projection:
|
58 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
59 |
+
else:
|
60 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
61 |
+
|
62 |
+
# Define transformers blocks
|
63 |
+
self.transformer_blocks = nn.ModuleList(
|
64 |
+
[
|
65 |
+
BasicTransformerBlock(
|
66 |
+
inner_dim,
|
67 |
+
num_attention_heads,
|
68 |
+
attention_head_dim,
|
69 |
+
dropout=dropout,
|
70 |
+
cross_attention_dim=cross_attention_dim,
|
71 |
+
activation_fn=activation_fn,
|
72 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
73 |
+
attention_bias=attention_bias,
|
74 |
+
only_cross_attention=only_cross_attention,
|
75 |
+
upcast_attention=upcast_attention,
|
76 |
+
)
|
77 |
+
for d in range(num_layers)
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Define output layers
|
82 |
+
if use_linear_projection:
|
83 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
84 |
+
else:
|
85 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
86 |
+
|
87 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True, \
|
88 |
+
inter_frame=False, **kwargs):
|
89 |
+
# Input
|
90 |
+
|
91 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
92 |
+
video_length = hidden_states.shape[2]
|
93 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
94 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
95 |
+
|
96 |
+
batch, channel, height, weight = hidden_states.shape
|
97 |
+
residual = hidden_states
|
98 |
+
|
99 |
+
# check resolution
|
100 |
+
resolu = hidden_states.shape[-1]
|
101 |
+
trajs = {}
|
102 |
+
trajs["traj"] = kwargs["trajs"]["traj{}".format(resolu)]
|
103 |
+
trajs["mask"] = kwargs["trajs"]["mask{}".format(resolu)]
|
104 |
+
trajs["t"] = kwargs["t"]
|
105 |
+
trajs["old_qk"] = kwargs["old_qk"]
|
106 |
+
|
107 |
+
hidden_states = self.norm(hidden_states)
|
108 |
+
if not self.use_linear_projection:
|
109 |
+
hidden_states = self.proj_in(hidden_states)
|
110 |
+
inner_dim = hidden_states.shape[1]
|
111 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
112 |
+
else:
|
113 |
+
inner_dim = hidden_states.shape[1]
|
114 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
115 |
+
hidden_states = self.proj_in(hidden_states)
|
116 |
+
|
117 |
+
# Blocks
|
118 |
+
for block in self.transformer_blocks:
|
119 |
+
hidden_states = block(
|
120 |
+
hidden_states,
|
121 |
+
encoder_hidden_states=encoder_hidden_states,
|
122 |
+
timestep=timestep,
|
123 |
+
video_length=video_length,
|
124 |
+
inter_frame=inter_frame,
|
125 |
+
**trajs
|
126 |
+
)
|
127 |
+
|
128 |
+
# Output
|
129 |
+
if not self.use_linear_projection:
|
130 |
+
hidden_states = (
|
131 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
132 |
+
)
|
133 |
+
hidden_states = self.proj_out(hidden_states)
|
134 |
+
else:
|
135 |
+
hidden_states = self.proj_out(hidden_states)
|
136 |
+
hidden_states = (
|
137 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
138 |
+
)
|
139 |
+
|
140 |
+
output = hidden_states + residual
|
141 |
+
|
142 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
143 |
+
if not return_dict:
|
144 |
+
return (output,)
|
145 |
+
|
146 |
+
return Transformer3DModelOutput(sample=output)
|
147 |
+
|
148 |
+
|
149 |
+
class BasicTransformerBlock(nn.Module):
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
dim: int,
|
153 |
+
num_attention_heads: int,
|
154 |
+
attention_head_dim: int,
|
155 |
+
dropout=0.0,
|
156 |
+
cross_attention_dim: Optional[int] = None,
|
157 |
+
activation_fn: str = "geglu",
|
158 |
+
num_embeds_ada_norm: Optional[int] = None,
|
159 |
+
attention_bias: bool = False,
|
160 |
+
only_cross_attention: bool = False,
|
161 |
+
upcast_attention: bool = False,
|
162 |
+
):
|
163 |
+
super().__init__()
|
164 |
+
self.only_cross_attention = only_cross_attention
|
165 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
166 |
+
|
167 |
+
# Fully
|
168 |
+
self.attn1 = FullyFrameAttention(
|
169 |
+
query_dim=dim,
|
170 |
+
heads=num_attention_heads,
|
171 |
+
dim_head=attention_head_dim,
|
172 |
+
dropout=dropout,
|
173 |
+
bias=attention_bias,
|
174 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
175 |
+
upcast_attention=upcast_attention,
|
176 |
+
)
|
177 |
+
|
178 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
179 |
+
|
180 |
+
# Cross-Attn
|
181 |
+
if cross_attention_dim is not None:
|
182 |
+
self.attn2 = CrossAttention(
|
183 |
+
query_dim=dim,
|
184 |
+
cross_attention_dim=cross_attention_dim,
|
185 |
+
heads=num_attention_heads,
|
186 |
+
dim_head=attention_head_dim,
|
187 |
+
dropout=dropout,
|
188 |
+
bias=attention_bias,
|
189 |
+
upcast_attention=upcast_attention,
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
self.attn2 = None
|
193 |
+
|
194 |
+
if cross_attention_dim is not None:
|
195 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
196 |
+
else:
|
197 |
+
self.norm2 = None
|
198 |
+
|
199 |
+
# Feed-forward
|
200 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
201 |
+
self.norm3 = nn.LayerNorm(dim)
|
202 |
+
|
203 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None):
|
204 |
+
if not is_xformers_available():
|
205 |
+
print("Here is how to install it")
|
206 |
+
raise ModuleNotFoundError(
|
207 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
208 |
+
" xformers",
|
209 |
+
name="xformers",
|
210 |
+
)
|
211 |
+
elif not torch.cuda.is_available():
|
212 |
+
raise ValueError(
|
213 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
214 |
+
" available for GPU "
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
try:
|
218 |
+
# Make sure we can run the memory efficient attention
|
219 |
+
_ = xformers.ops.memory_efficient_attention(
|
220 |
+
torch.randn((1, 2, 40), device="cuda"),
|
221 |
+
torch.randn((1, 2, 40), device="cuda"),
|
222 |
+
torch.randn((1, 2, 40), device="cuda"),
|
223 |
+
)
|
224 |
+
except Exception as e:
|
225 |
+
raise e
|
226 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
227 |
+
if self.attn2 is not None:
|
228 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
229 |
+
|
230 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, \
|
231 |
+
inter_frame=False, **kwargs):
|
232 |
+
# SparseCausal-Attention
|
233 |
+
norm_hidden_states = (
|
234 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
235 |
+
)
|
236 |
+
|
237 |
+
if self.only_cross_attention:
|
238 |
+
hidden_states = (
|
239 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask, inter_frame=inter_frame, **kwargs) + hidden_states
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length, inter_frame=inter_frame, **kwargs) + hidden_states
|
243 |
+
|
244 |
+
if self.attn2 is not None:
|
245 |
+
# Cross-Attention
|
246 |
+
norm_hidden_states = (
|
247 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
248 |
+
)
|
249 |
+
hidden_states = (
|
250 |
+
self.attn2(
|
251 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
252 |
+
)
|
253 |
+
+ hidden_states
|
254 |
+
)
|
255 |
+
|
256 |
+
# Feed-forward
|
257 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
258 |
+
|
259 |
+
return hidden_states
|
260 |
+
|
261 |
+
class FullyFrameAttention(nn.Module):
|
262 |
+
r"""
|
263 |
+
A cross attention layer.
|
264 |
+
|
265 |
+
Parameters:
|
266 |
+
query_dim (`int`): The number of channels in the query.
|
267 |
+
cross_attention_dim (`int`, *optional*):
|
268 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
269 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
270 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
271 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
272 |
+
bias (`bool`, *optional*, defaults to False):
|
273 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
274 |
+
"""
|
275 |
+
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
query_dim: int,
|
279 |
+
cross_attention_dim: Optional[int] = None,
|
280 |
+
heads: int = 8,
|
281 |
+
dim_head: int = 64,
|
282 |
+
dropout: float = 0.0,
|
283 |
+
bias=False,
|
284 |
+
upcast_attention: bool = False,
|
285 |
+
upcast_softmax: bool = False,
|
286 |
+
added_kv_proj_dim: Optional[int] = None,
|
287 |
+
norm_num_groups: Optional[int] = None,
|
288 |
+
):
|
289 |
+
super().__init__()
|
290 |
+
inner_dim = dim_head * heads
|
291 |
+
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
292 |
+
self.upcast_attention = upcast_attention
|
293 |
+
self.upcast_softmax = upcast_softmax
|
294 |
+
|
295 |
+
self.scale = dim_head**-0.5
|
296 |
+
|
297 |
+
self.heads = heads
|
298 |
+
# for slice_size > 0 the attention score computation
|
299 |
+
# is split across the batch axis to save memory
|
300 |
+
# You can set slice_size with `set_attention_slice`
|
301 |
+
self.sliceable_head_dim = heads
|
302 |
+
self._slice_size = None
|
303 |
+
self._use_memory_efficient_attention_xformers = False
|
304 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
305 |
+
|
306 |
+
if norm_num_groups is not None:
|
307 |
+
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
|
308 |
+
else:
|
309 |
+
self.group_norm = None
|
310 |
+
|
311 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
|
312 |
+
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
313 |
+
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
|
314 |
+
|
315 |
+
if self.added_kv_proj_dim is not None:
|
316 |
+
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
|
317 |
+
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
|
318 |
+
|
319 |
+
self.to_out = nn.ModuleList([])
|
320 |
+
self.to_out.append(nn.Linear(inner_dim, query_dim))
|
321 |
+
self.to_out.append(nn.Dropout(dropout))
|
322 |
+
|
323 |
+
self.q = None
|
324 |
+
self.inject_q = None
|
325 |
+
self.k = None
|
326 |
+
self.inject_k = None
|
327 |
+
|
328 |
+
|
329 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
330 |
+
batch_size, seq_len, dim = tensor.shape
|
331 |
+
head_size = self.heads
|
332 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
333 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
334 |
+
return tensor
|
335 |
+
|
336 |
+
def reshape_heads_to_batch_dim2(self, tensor):
|
337 |
+
batch_size, seq_len, dim = tensor.shape
|
338 |
+
head_size = self.heads
|
339 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
340 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
341 |
+
return tensor
|
342 |
+
|
343 |
+
def reshape_heads_to_batch_dim3(self, tensor):
|
344 |
+
batch_size1, batch_size2, seq_len, dim = tensor.shape
|
345 |
+
head_size = self.heads
|
346 |
+
tensor = tensor.reshape(batch_size1, batch_size2, seq_len, head_size, dim // head_size)
|
347 |
+
tensor = tensor.permute(0, 3, 1, 2, 4)
|
348 |
+
return tensor
|
349 |
+
|
350 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
351 |
+
batch_size, seq_len, dim = tensor.shape
|
352 |
+
head_size = self.heads
|
353 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
354 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
355 |
+
return tensor
|
356 |
+
|
357 |
+
def set_attention_slice(self, slice_size):
|
358 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
359 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
360 |
+
|
361 |
+
self._slice_size = slice_size
|
362 |
+
|
363 |
+
def _attention(self, query, key, value, attention_mask=None):
|
364 |
+
if self.upcast_attention:
|
365 |
+
query = query.float()
|
366 |
+
key = key.float()
|
367 |
+
|
368 |
+
attention_scores = torch.baddbmm(
|
369 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
370 |
+
query,
|
371 |
+
key.transpose(-1, -2),
|
372 |
+
beta=0,
|
373 |
+
alpha=self.scale,
|
374 |
+
)
|
375 |
+
if attention_mask is not None:
|
376 |
+
attention_scores = attention_scores + attention_mask
|
377 |
+
|
378 |
+
if self.upcast_softmax:
|
379 |
+
attention_scores = attention_scores.float()
|
380 |
+
|
381 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
382 |
+
|
383 |
+
# cast back to the original dtype
|
384 |
+
attention_probs = attention_probs.to(value.dtype)
|
385 |
+
|
386 |
+
# compute attention output
|
387 |
+
hidden_states = torch.bmm(attention_probs, value)
|
388 |
+
|
389 |
+
# reshape hidden_states
|
390 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
391 |
+
return hidden_states
|
392 |
+
|
393 |
+
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
|
394 |
+
batch_size_attention = query.shape[0]
|
395 |
+
hidden_states = torch.zeros(
|
396 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
397 |
+
)
|
398 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
399 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
400 |
+
start_idx = i * slice_size
|
401 |
+
end_idx = (i + 1) * slice_size
|
402 |
+
|
403 |
+
query_slice = query[start_idx:end_idx]
|
404 |
+
key_slice = key[start_idx:end_idx]
|
405 |
+
|
406 |
+
if self.upcast_attention:
|
407 |
+
query_slice = query_slice.float()
|
408 |
+
key_slice = key_slice.float()
|
409 |
+
|
410 |
+
attn_slice = torch.baddbmm(
|
411 |
+
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
|
412 |
+
query_slice,
|
413 |
+
key_slice.transpose(-1, -2),
|
414 |
+
beta=0,
|
415 |
+
alpha=self.scale,
|
416 |
+
)
|
417 |
+
|
418 |
+
if attention_mask is not None:
|
419 |
+
attn_slice = attn_slice + attention_mask[start_idx:end_idx]
|
420 |
+
|
421 |
+
if self.upcast_softmax:
|
422 |
+
attn_slice = attn_slice.float()
|
423 |
+
|
424 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
425 |
+
|
426 |
+
# cast back to the original dtype
|
427 |
+
attn_slice = attn_slice.to(value.dtype)
|
428 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
429 |
+
|
430 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
431 |
+
|
432 |
+
# reshape hidden_states
|
433 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
434 |
+
return hidden_states
|
435 |
+
|
436 |
+
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
437 |
+
# TODO attention_mask
|
438 |
+
query = query.contiguous()
|
439 |
+
key = key.contiguous()
|
440 |
+
value = value.contiguous()
|
441 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
442 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
443 |
+
return hidden_states
|
444 |
+
|
445 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, inter_frame=False, **kwargs):
|
446 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
447 |
+
|
448 |
+
encoder_hidden_states = encoder_hidden_states
|
449 |
+
|
450 |
+
h = w = int(math.sqrt(sequence_length))
|
451 |
+
if self.group_norm is not None:
|
452 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
453 |
+
|
454 |
+
query = self.to_q(hidden_states) # (bf) x d(hw) x c
|
455 |
+
self.q = query
|
456 |
+
if self.inject_q is not None:
|
457 |
+
query = self.inject_q
|
458 |
+
dim = query.shape[-1]
|
459 |
+
query_old = query.clone()
|
460 |
+
|
461 |
+
# All frames
|
462 |
+
query = rearrange(query, "(b f) d c -> b (f d) c", f=video_length)
|
463 |
+
|
464 |
+
query = self.reshape_heads_to_batch_dim(query)
|
465 |
+
|
466 |
+
if self.added_kv_proj_dim is not None:
|
467 |
+
raise NotImplementedError
|
468 |
+
|
469 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
470 |
+
key = self.to_k(encoder_hidden_states)
|
471 |
+
self.k = key
|
472 |
+
if self.inject_k is not None:
|
473 |
+
key = self.inject_k
|
474 |
+
key_old = key.clone()
|
475 |
+
value = self.to_v(encoder_hidden_states)
|
476 |
+
|
477 |
+
if inter_frame:
|
478 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)[:, [0, -1]]
|
479 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)[:, [0, -1]]
|
480 |
+
key = rearrange(key, "b f d c -> b (f d) c",)
|
481 |
+
value = rearrange(value, "b f d c -> b (f d) c")
|
482 |
+
else:
|
483 |
+
# All frames
|
484 |
+
key = rearrange(key, "(b f) d c -> b (f d) c", f=video_length)
|
485 |
+
value = rearrange(value, "(b f) d c -> b (f d) c", f=video_length)
|
486 |
+
|
487 |
+
key = self.reshape_heads_to_batch_dim(key)
|
488 |
+
value = self.reshape_heads_to_batch_dim(value)
|
489 |
+
|
490 |
+
if attention_mask is not None:
|
491 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
492 |
+
target_length = query.shape[1]
|
493 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
494 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
495 |
+
|
496 |
+
# attention, what we cannot get enough of
|
497 |
+
if self._use_memory_efficient_attention_xformers:
|
498 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
499 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
500 |
+
hidden_states = hidden_states.to(query.dtype)
|
501 |
+
else:
|
502 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
503 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
504 |
+
else:
|
505 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
506 |
+
|
507 |
+
if h in [64]:
|
508 |
+
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=video_length)
|
509 |
+
if self.group_norm is not None:
|
510 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
511 |
+
|
512 |
+
if kwargs["old_qk"] == 1:
|
513 |
+
query = query_old
|
514 |
+
key = key_old
|
515 |
+
else:
|
516 |
+
query = hidden_states
|
517 |
+
key = hidden_states
|
518 |
+
value = hidden_states
|
519 |
+
|
520 |
+
traj = kwargs["traj"]
|
521 |
+
traj = rearrange(traj, '(f n) l d -> f n l d', f=video_length, n=sequence_length)
|
522 |
+
mask = rearrange(kwargs["mask"], '(f n) l -> f n l', f=video_length, n=sequence_length)
|
523 |
+
mask = torch.cat([mask[:, :, 0].unsqueeze(-1), mask[:, :, -video_length+1:]], dim=-1)
|
524 |
+
|
525 |
+
traj_key_sequence_inds = torch.cat([traj[:, :, 0, :].unsqueeze(-2), traj[:, :, -video_length+1:, :]], dim=-2)
|
526 |
+
t_inds = traj_key_sequence_inds[:, :, :, 0]
|
527 |
+
x_inds = traj_key_sequence_inds[:, :, :, 1]
|
528 |
+
y_inds = traj_key_sequence_inds[:, :, :, 2]
|
529 |
+
|
530 |
+
query_tempo = query.unsqueeze(-2)
|
531 |
+
_key = rearrange(key, '(b f) (h w) d -> b f h w d', b=int(batch_size/video_length), f=video_length, h=h, w=w)
|
532 |
+
_value = rearrange(value, '(b f) (h w) d -> b f h w d', b=int(batch_size/video_length), f=video_length, h=h, w=w)
|
533 |
+
key_tempo = _key[:, t_inds, x_inds, y_inds]
|
534 |
+
value_tempo = _value[:, t_inds, x_inds, y_inds]
|
535 |
+
key_tempo = rearrange(key_tempo, 'b f n l d -> (b f) n l d')
|
536 |
+
value_tempo = rearrange(value_tempo, 'b f n l d -> (b f) n l d')
|
537 |
+
|
538 |
+
mask = rearrange(torch.stack([mask, mask]), 'b f n l -> (b f) n l')
|
539 |
+
mask = mask[:,None].repeat(1, self.heads, 1, 1).unsqueeze(-2)
|
540 |
+
attn_bias = torch.zeros_like(mask, dtype=key_tempo.dtype) # regular zeros_like
|
541 |
+
attn_bias[~mask] = -torch.inf
|
542 |
+
|
543 |
+
# flow attention
|
544 |
+
query_tempo = self.reshape_heads_to_batch_dim3(query_tempo)
|
545 |
+
key_tempo = self.reshape_heads_to_batch_dim3(key_tempo)
|
546 |
+
value_tempo = self.reshape_heads_to_batch_dim3(value_tempo)
|
547 |
+
|
548 |
+
attn_matrix2 = query_tempo @ key_tempo.transpose(-2, -1) / math.sqrt(query_tempo.size(-1)) + attn_bias
|
549 |
+
attn_matrix2 = F.softmax(attn_matrix2, dim=-1)
|
550 |
+
out = (attn_matrix2@value_tempo).squeeze(-2)
|
551 |
+
|
552 |
+
hidden_states = rearrange(out,'(b f) k (h w) d -> b (f h w) (k d)', b=int(batch_size/video_length), f=video_length, h=h, w=w)
|
553 |
+
|
554 |
+
# linear proj
|
555 |
+
hidden_states = self.to_out[0](hidden_states)
|
556 |
+
|
557 |
+
# dropout
|
558 |
+
hidden_states = self.to_out[1](hidden_states)
|
559 |
+
|
560 |
+
# All frames
|
561 |
+
hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=video_length)
|
562 |
+
|
563 |
+
return hidden_states
|
models/pipeline_flatten.py
ADDED
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
19 |
+
from dataclasses import dataclass
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
from diffusers.models import AutoencoderKL
|
27 |
+
from diffusers import ModelMixin
|
28 |
+
from diffusers.schedulers import DDIMScheduler, DDIMInverseScheduler
|
29 |
+
from diffusers.utils import (
|
30 |
+
PIL_INTERPOLATION,
|
31 |
+
is_accelerate_available,
|
32 |
+
is_accelerate_version,
|
33 |
+
logging,
|
34 |
+
randn_tensor,
|
35 |
+
BaseOutput
|
36 |
+
)
|
37 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
38 |
+
from einops import rearrange
|
39 |
+
from .unet import UNet3DConditionModel
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class FlattenPipelineOutput(BaseOutput):
|
46 |
+
videos: Union[torch.Tensor, np.ndarray]
|
47 |
+
|
48 |
+
class FlattenPipeline(DiffusionPipeline):
|
49 |
+
r"""
|
50 |
+
pipeline for FLATTEN: optical FLow-guided ATTENtion for consistent text-to-video editing.
|
51 |
+
|
52 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
53 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
54 |
+
|
55 |
+
Args:
|
56 |
+
vae ([`AutoencoderKL`]):
|
57 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
58 |
+
text_encoder ([`CLIPTextModel`]):
|
59 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
60 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
61 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
62 |
+
tokenizer (`CLIPTokenizer`):
|
63 |
+
Tokenizer of class
|
64 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
65 |
+
unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded video latents.
|
66 |
+
scheduler ([`SchedulerMixin`]):
|
67 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
68 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
69 |
+
inverse_scheduler ([`SchedulerMixin`]):
|
70 |
+
DDIM inversion scheduler .
|
71 |
+
"""
|
72 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vae: AutoencoderKL,
|
77 |
+
text_encoder: CLIPTextModel,
|
78 |
+
tokenizer: CLIPTokenizer,
|
79 |
+
unet: UNet3DConditionModel,
|
80 |
+
scheduler: DDIMScheduler,
|
81 |
+
inverse_scheduler: DDIMInverseScheduler
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.register_modules(
|
86 |
+
vae=vae,
|
87 |
+
text_encoder=text_encoder,
|
88 |
+
tokenizer=tokenizer,
|
89 |
+
unet=unet,
|
90 |
+
scheduler=scheduler,
|
91 |
+
inverse_scheduler=inverse_scheduler
|
92 |
+
)
|
93 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
94 |
+
|
95 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
96 |
+
def enable_vae_slicing(self):
|
97 |
+
r"""
|
98 |
+
Enable sliced VAE decoding.
|
99 |
+
|
100 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
101 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
102 |
+
"""
|
103 |
+
self.vae.enable_slicing()
|
104 |
+
|
105 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
106 |
+
def disable_vae_slicing(self):
|
107 |
+
r"""
|
108 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
109 |
+
computing decoding in one step.
|
110 |
+
"""
|
111 |
+
self.vae.disable_slicing()
|
112 |
+
|
113 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
114 |
+
r"""
|
115 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
116 |
+
text_encoder, vae, and safety checker have their state dicts saved to CPU and then are moved to a
|
117 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
118 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
119 |
+
`enable_model_cpu_offload`, but performance is lower.
|
120 |
+
"""
|
121 |
+
if is_accelerate_available():
|
122 |
+
from accelerate import cpu_offload
|
123 |
+
else:
|
124 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
125 |
+
|
126 |
+
device = torch.device(f"cuda:{gpu_id}")
|
127 |
+
|
128 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
129 |
+
cpu_offload(cpu_offloaded_model, device)
|
130 |
+
|
131 |
+
if self.safety_checker is not None:
|
132 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
133 |
+
|
134 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
135 |
+
r"""
|
136 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
137 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
138 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
139 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
140 |
+
"""
|
141 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
142 |
+
from accelerate import cpu_offload_with_hook
|
143 |
+
else:
|
144 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
145 |
+
|
146 |
+
device = torch.device(f"cuda:{gpu_id}")
|
147 |
+
|
148 |
+
hook = None
|
149 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
150 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
151 |
+
|
152 |
+
if self.safety_checker is not None:
|
153 |
+
# the safety checker can offload the vae again
|
154 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
155 |
+
|
156 |
+
# We'll offload the last model manually.
|
157 |
+
self.final_offload_hook = hook
|
158 |
+
|
159 |
+
@property
|
160 |
+
def _execution_device(self):
|
161 |
+
r"""
|
162 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
163 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
164 |
+
hooks.
|
165 |
+
"""
|
166 |
+
if not hasattr(self.unet, "_hf_hook"):
|
167 |
+
return self.device
|
168 |
+
for module in self.unet.modules():
|
169 |
+
if (
|
170 |
+
hasattr(module, "_hf_hook")
|
171 |
+
and hasattr(module._hf_hook, "execution_device")
|
172 |
+
and module._hf_hook.execution_device is not None
|
173 |
+
):
|
174 |
+
return torch.device(module._hf_hook.execution_device)
|
175 |
+
return self.device
|
176 |
+
|
177 |
+
def _encode_prompt(
|
178 |
+
self,
|
179 |
+
prompt,
|
180 |
+
device,
|
181 |
+
num_videos_per_prompt,
|
182 |
+
do_classifier_free_guidance,
|
183 |
+
negative_prompt=None,
|
184 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
185 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
186 |
+
):
|
187 |
+
r"""
|
188 |
+
Encodes the prompt into text encoder hidden states.
|
189 |
+
|
190 |
+
Args:
|
191 |
+
prompt (`str` or `List[str]`, *optional*):
|
192 |
+
prompt to be encoded
|
193 |
+
device: (`torch.device`):
|
194 |
+
torch device
|
195 |
+
num_videos_per_prompt (`int`):
|
196 |
+
number of images that should be generated per prompt
|
197 |
+
do_classifier_free_guidance (`bool`):
|
198 |
+
whether to use classifier free guidance or not
|
199 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
200 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
201 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
202 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
203 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
204 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
205 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
206 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
207 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
208 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
209 |
+
argument.
|
210 |
+
"""
|
211 |
+
if prompt is not None and isinstance(prompt, str):
|
212 |
+
batch_size = 1
|
213 |
+
elif prompt is not None and isinstance(prompt, list):
|
214 |
+
batch_size = len(prompt)
|
215 |
+
else:
|
216 |
+
batch_size = prompt_embeds.shape[0]
|
217 |
+
|
218 |
+
if prompt_embeds is None:
|
219 |
+
text_inputs = self.tokenizer(
|
220 |
+
prompt,
|
221 |
+
padding="max_length",
|
222 |
+
max_length=self.tokenizer.model_max_length,
|
223 |
+
truncation=True,
|
224 |
+
return_tensors="pt",
|
225 |
+
)
|
226 |
+
text_input_ids = text_inputs.input_ids
|
227 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
228 |
+
|
229 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
230 |
+
text_input_ids, untruncated_ids
|
231 |
+
):
|
232 |
+
removed_text = self.tokenizer.batch_decode(
|
233 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
234 |
+
)
|
235 |
+
logger.warning(
|
236 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
237 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
238 |
+
)
|
239 |
+
|
240 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
241 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
242 |
+
else:
|
243 |
+
attention_mask = None
|
244 |
+
|
245 |
+
prompt_embeds = self.text_encoder(
|
246 |
+
text_input_ids.to(device),
|
247 |
+
attention_mask=attention_mask,
|
248 |
+
)
|
249 |
+
prompt_embeds = prompt_embeds[0]
|
250 |
+
|
251 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
252 |
+
|
253 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
254 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
255 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
256 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
257 |
+
|
258 |
+
# get unconditional embeddings for classifier free guidance
|
259 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
260 |
+
uncond_tokens: List[str]
|
261 |
+
if negative_prompt is None:
|
262 |
+
uncond_tokens = [""] * batch_size
|
263 |
+
elif type(prompt) is not type(negative_prompt):
|
264 |
+
raise TypeError(
|
265 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
266 |
+
f" {type(prompt)}."
|
267 |
+
)
|
268 |
+
elif isinstance(negative_prompt, str):
|
269 |
+
uncond_tokens = [negative_prompt]
|
270 |
+
elif batch_size != len(negative_prompt):
|
271 |
+
raise ValueError(
|
272 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
273 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
274 |
+
" the batch size of `prompt`."
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
uncond_tokens = negative_prompt
|
278 |
+
|
279 |
+
max_length = prompt_embeds.shape[1]
|
280 |
+
uncond_input = self.tokenizer(
|
281 |
+
uncond_tokens,
|
282 |
+
padding="max_length",
|
283 |
+
max_length=max_length,
|
284 |
+
truncation=True,
|
285 |
+
return_tensors="pt",
|
286 |
+
)
|
287 |
+
|
288 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
289 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
290 |
+
else:
|
291 |
+
attention_mask = None
|
292 |
+
|
293 |
+
negative_prompt_embeds = self.text_encoder(
|
294 |
+
uncond_input.input_ids.to(device),
|
295 |
+
attention_mask=attention_mask,
|
296 |
+
)
|
297 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
298 |
+
|
299 |
+
if do_classifier_free_guidance:
|
300 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
301 |
+
seq_len = negative_prompt_embeds.shape[1]
|
302 |
+
|
303 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
304 |
+
|
305 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
306 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
307 |
+
|
308 |
+
# For classifier free guidance, we need to do two forward passes.
|
309 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
310 |
+
# to avoid doing two forward passes
|
311 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
312 |
+
|
313 |
+
return prompt_embeds
|
314 |
+
|
315 |
+
def decode_latents(self, latents, return_tensor=False):
|
316 |
+
video_length = latents.shape[2]
|
317 |
+
latents = 1 / 0.18215 * latents
|
318 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
319 |
+
video = self.vae.decode(latents).sample
|
320 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
321 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
322 |
+
if return_tensor:
|
323 |
+
return video
|
324 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
325 |
+
video = video.cpu().float().numpy()
|
326 |
+
return video
|
327 |
+
|
328 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
329 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
330 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
331 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
332 |
+
# and should be between [0, 1]
|
333 |
+
|
334 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
335 |
+
extra_step_kwargs = {}
|
336 |
+
if accepts_eta:
|
337 |
+
extra_step_kwargs["eta"] = eta
|
338 |
+
|
339 |
+
# check if the scheduler accepts generator
|
340 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
341 |
+
if accepts_generator:
|
342 |
+
extra_step_kwargs["generator"] = generator
|
343 |
+
return extra_step_kwargs
|
344 |
+
|
345 |
+
def check_inputs(
|
346 |
+
self,
|
347 |
+
prompt,
|
348 |
+
# image,
|
349 |
+
height,
|
350 |
+
width,
|
351 |
+
callback_steps,
|
352 |
+
negative_prompt=None,
|
353 |
+
prompt_embeds=None,
|
354 |
+
negative_prompt_embeds=None,
|
355 |
+
):
|
356 |
+
if height % 8 != 0 or width % 8 != 0:
|
357 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
358 |
+
|
359 |
+
if (callback_steps is None) or (
|
360 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
361 |
+
):
|
362 |
+
raise ValueError(
|
363 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
364 |
+
f" {type(callback_steps)}."
|
365 |
+
)
|
366 |
+
|
367 |
+
if prompt is not None and prompt_embeds is not None:
|
368 |
+
raise ValueError(
|
369 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
370 |
+
" only forward one of the two."
|
371 |
+
)
|
372 |
+
elif prompt is None and prompt_embeds is None:
|
373 |
+
raise ValueError(
|
374 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
375 |
+
)
|
376 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
377 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
378 |
+
|
379 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
380 |
+
raise ValueError(
|
381 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
382 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
383 |
+
)
|
384 |
+
|
385 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
386 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
387 |
+
raise ValueError(
|
388 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
389 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
390 |
+
f" {negative_prompt_embeds.shape}."
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def check_image(self, image, prompt, prompt_embeds):
|
395 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
396 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
397 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
398 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
399 |
+
|
400 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
401 |
+
raise TypeError(
|
402 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
403 |
+
)
|
404 |
+
|
405 |
+
if image_is_pil:
|
406 |
+
image_batch_size = 1
|
407 |
+
elif image_is_tensor:
|
408 |
+
image_batch_size = image.shape[0]
|
409 |
+
elif image_is_pil_list:
|
410 |
+
image_batch_size = len(image)
|
411 |
+
elif image_is_tensor_list:
|
412 |
+
image_batch_size = len(image)
|
413 |
+
|
414 |
+
if prompt is not None and isinstance(prompt, str):
|
415 |
+
prompt_batch_size = 1
|
416 |
+
elif prompt is not None and isinstance(prompt, list):
|
417 |
+
prompt_batch_size = len(prompt)
|
418 |
+
elif prompt_embeds is not None:
|
419 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
420 |
+
|
421 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
422 |
+
raise ValueError(
|
423 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
424 |
+
)
|
425 |
+
|
426 |
+
def prepare_image(
|
427 |
+
self, image, width, height, batch_size, num_videos_per_prompt, device, dtype, do_classifier_free_guidance
|
428 |
+
):
|
429 |
+
if not isinstance(image, torch.Tensor):
|
430 |
+
if isinstance(image, PIL.Image.Image):
|
431 |
+
image = [image]
|
432 |
+
|
433 |
+
if isinstance(image[0], PIL.Image.Image):
|
434 |
+
images = []
|
435 |
+
|
436 |
+
for image_ in image:
|
437 |
+
image_ = image_.convert("RGB")
|
438 |
+
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
|
439 |
+
image_ = np.array(image_)
|
440 |
+
image_ = image_[None, :]
|
441 |
+
images.append(image_)
|
442 |
+
|
443 |
+
image = images
|
444 |
+
|
445 |
+
image = np.concatenate(image, axis=0)
|
446 |
+
image = np.array(image).astype(np.float32) / 255.0
|
447 |
+
image = image.transpose(0, 3, 1, 2)
|
448 |
+
image = 2.0 * image - 1.0
|
449 |
+
image = torch.from_numpy(image)
|
450 |
+
elif isinstance(image[0], torch.Tensor):
|
451 |
+
image = torch.cat(image, dim=0)
|
452 |
+
|
453 |
+
image_batch_size = image.shape[0]
|
454 |
+
|
455 |
+
if image_batch_size == 1:
|
456 |
+
repeat_by = batch_size
|
457 |
+
else:
|
458 |
+
# image batch size is the same as prompt batch size
|
459 |
+
repeat_by = num_videos_per_prompt
|
460 |
+
|
461 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
462 |
+
|
463 |
+
image = image.to(device=device, dtype=dtype)
|
464 |
+
|
465 |
+
return image
|
466 |
+
|
467 |
+
def prepare_video_latents(self, frames, batch_size, dtype, device, generator=None):
|
468 |
+
if not isinstance(frames, (torch.Tensor, PIL.Image.Image, list)):
|
469 |
+
raise ValueError(
|
470 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
471 |
+
)
|
472 |
+
|
473 |
+
frames = frames[0].to(device=device, dtype=dtype)
|
474 |
+
frames = rearrange(frames, "c f h w -> f c h w" )
|
475 |
+
|
476 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
477 |
+
raise ValueError(
|
478 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
479 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
480 |
+
)
|
481 |
+
|
482 |
+
if isinstance(generator, list):
|
483 |
+
latents = [
|
484 |
+
self.vae.encode(frames[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
485 |
+
]
|
486 |
+
latents = torch.cat(latents, dim=0)
|
487 |
+
else:
|
488 |
+
latents = self.vae.encode(frames).latent_dist.sample(generator)
|
489 |
+
|
490 |
+
latents = self.vae.config.scaling_factor * latents
|
491 |
+
|
492 |
+
latents = rearrange(latents, "f c h w ->c f h w" )
|
493 |
+
|
494 |
+
return latents[None]
|
495 |
+
|
496 |
+
def _default_height_width(self, height, width, image):
|
497 |
+
# NOTE: It is possible that a list of images have different
|
498 |
+
# dimensions for each image, so just checking the first image
|
499 |
+
# is not _exactly_ correct, but it is simple.
|
500 |
+
while isinstance(image, list):
|
501 |
+
image = image[0]
|
502 |
+
|
503 |
+
if height is None:
|
504 |
+
if isinstance(image, PIL.Image.Image):
|
505 |
+
height = image.height
|
506 |
+
elif isinstance(image, torch.Tensor):
|
507 |
+
height = image.shape[3]
|
508 |
+
|
509 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
510 |
+
|
511 |
+
if width is None:
|
512 |
+
if isinstance(image, PIL.Image.Image):
|
513 |
+
width = image.width
|
514 |
+
elif isinstance(image, torch.Tensor):
|
515 |
+
width = image.shape[2]
|
516 |
+
|
517 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
518 |
+
|
519 |
+
return height, width
|
520 |
+
|
521 |
+
def get_alpha_prev(self, timestep):
|
522 |
+
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
523 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
524 |
+
return alpha_prod_t_prev
|
525 |
+
|
526 |
+
def get_slide_window_indices(self, video_length, window_size):
|
527 |
+
assert window_size >=3
|
528 |
+
key_frame_indices = np.arange(0, video_length, window_size-1).tolist()
|
529 |
+
|
530 |
+
# Append last index
|
531 |
+
if key_frame_indices[-1] != (video_length-1):
|
532 |
+
key_frame_indices.append(video_length-1)
|
533 |
+
|
534 |
+
slices = np.split(np.arange(video_length), key_frame_indices)
|
535 |
+
inter_frame_list = []
|
536 |
+
for s in slices:
|
537 |
+
if len(s) < 2:
|
538 |
+
continue
|
539 |
+
inter_frame_list.append(s[1:].tolist())
|
540 |
+
return key_frame_indices, inter_frame_list
|
541 |
+
|
542 |
+
def get_inverse_timesteps(self, num_inference_steps, strength, device):
|
543 |
+
# get the original timestep using init_timestep
|
544 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
545 |
+
|
546 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
547 |
+
|
548 |
+
# safety for t_start overflow to prevent empty timsteps slice
|
549 |
+
if t_start == 0:
|
550 |
+
return self.inverse_scheduler.timesteps, num_inference_steps
|
551 |
+
timesteps = self.inverse_scheduler.timesteps[:-t_start]
|
552 |
+
|
553 |
+
return timesteps, num_inference_steps - t_start
|
554 |
+
|
555 |
+
def clean_features(self):
|
556 |
+
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = None
|
557 |
+
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = None
|
558 |
+
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = None
|
559 |
+
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = None
|
560 |
+
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = None
|
561 |
+
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = None
|
562 |
+
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = None
|
563 |
+
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = None
|
564 |
+
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = None
|
565 |
+
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = None
|
566 |
+
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = None
|
567 |
+
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = None
|
568 |
+
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = None
|
569 |
+
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = None
|
570 |
+
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = None
|
571 |
+
|
572 |
+
@torch.no_grad()
|
573 |
+
def __call__(
|
574 |
+
self,
|
575 |
+
prompt: Union[str, List[str]] = None,
|
576 |
+
video_length: Optional[int] = 1,
|
577 |
+
frames: Union[List[torch.FloatTensor], List[PIL.Image.Image], List[List[torch.FloatTensor]], List[List[PIL.Image.Image]]] = None,
|
578 |
+
height: Optional[int] = None,
|
579 |
+
width: Optional[int] = None,
|
580 |
+
num_inference_steps: int = 50,
|
581 |
+
guidance_scale: float = 7.5,
|
582 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
583 |
+
num_videos_per_prompt: Optional[int] = 1,
|
584 |
+
eta: float = 0.0,
|
585 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
586 |
+
latents: Optional[torch.FloatTensor] = None,
|
587 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
588 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
589 |
+
output_type: Optional[str] = "tensor",
|
590 |
+
return_dict: bool = True,
|
591 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
592 |
+
callback_steps: int = 1,
|
593 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
594 |
+
**kwargs,
|
595 |
+
):
|
596 |
+
r"""
|
597 |
+
Function invoked when calling the pipeline for generation.
|
598 |
+
|
599 |
+
Args:
|
600 |
+
prompt (`str` or `List[str]`, *optional*):
|
601 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
602 |
+
instead.
|
603 |
+
frames (`List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
|
604 |
+
`List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
|
605 |
+
The original video frames to be edited.
|
606 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
607 |
+
The height in pixels of the generated image.
|
608 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
609 |
+
The width in pixels of the generated image.
|
610 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
611 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
612 |
+
expense of slower inference.
|
613 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
614 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
615 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
616 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
617 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
618 |
+
usually at the expense of lower image quality.
|
619 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
620 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
621 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
622 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
623 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
624 |
+
The number of images to generate per prompt.
|
625 |
+
eta (`float`, *optional*, defaults to 0.0):
|
626 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
627 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
628 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
629 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
630 |
+
to make generation deterministic.
|
631 |
+
latents (`torch.FloatTensor`, *optional*):
|
632 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
633 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
634 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
635 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
636 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
637 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
638 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
639 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
640 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
641 |
+
argument.
|
642 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
643 |
+
The output format of the generate image. Choose between
|
644 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
645 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
646 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
647 |
+
plain tuple.
|
648 |
+
callback (`Callable`, *optional*):
|
649 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
650 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
651 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
652 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
653 |
+
called at every step.
|
654 |
+
cross_attention_kwargs (`dict`, *optional*):
|
655 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
656 |
+
`self.processor` in
|
657 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
658 |
+
"""
|
659 |
+
height, width = self._default_height_width(height, width, frames)
|
660 |
+
|
661 |
+
self.check_inputs(
|
662 |
+
prompt,
|
663 |
+
height,
|
664 |
+
width,
|
665 |
+
callback_steps,
|
666 |
+
negative_prompt,
|
667 |
+
prompt_embeds,
|
668 |
+
negative_prompt_embeds,
|
669 |
+
)
|
670 |
+
|
671 |
+
if prompt is not None and isinstance(prompt, str):
|
672 |
+
batch_size = 1
|
673 |
+
elif prompt is not None and isinstance(prompt, list):
|
674 |
+
batch_size = len(prompt)
|
675 |
+
else:
|
676 |
+
batch_size = prompt_embeds.shape[0]
|
677 |
+
|
678 |
+
device = self._execution_device
|
679 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
680 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
681 |
+
# corresponds to doing no classifier free guidance.
|
682 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
683 |
+
|
684 |
+
# encode empty prompt
|
685 |
+
prompt_embeds = self._encode_prompt(
|
686 |
+
"",
|
687 |
+
device,
|
688 |
+
num_videos_per_prompt,
|
689 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
690 |
+
negative_prompt=None,
|
691 |
+
prompt_embeds=prompt_embeds,
|
692 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
693 |
+
)
|
694 |
+
|
695 |
+
images = []
|
696 |
+
for i_img in frames:
|
697 |
+
i_img = self.prepare_image(
|
698 |
+
image=i_img,
|
699 |
+
width=width,
|
700 |
+
height=height,
|
701 |
+
batch_size=batch_size * num_videos_per_prompt,
|
702 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
703 |
+
device=device,
|
704 |
+
dtype=self.unet.dtype,
|
705 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
706 |
+
)
|
707 |
+
images.append(i_img)
|
708 |
+
frames = torch.stack(images, dim=2) # b x c x f x h x w
|
709 |
+
|
710 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
711 |
+
|
712 |
+
latents = self.prepare_video_latents(frames, batch_size, self.unet.dtype, device, generator=generator)
|
713 |
+
|
714 |
+
saved_features0 = []
|
715 |
+
saved_features1 = []
|
716 |
+
saved_features2 = []
|
717 |
+
saved_q4 = []
|
718 |
+
saved_k4 = []
|
719 |
+
saved_q5 = []
|
720 |
+
saved_k5 = []
|
721 |
+
saved_q6 = []
|
722 |
+
saved_k6 = []
|
723 |
+
saved_q7 = []
|
724 |
+
saved_k7 = []
|
725 |
+
saved_q8 = []
|
726 |
+
saved_k8 = []
|
727 |
+
saved_q9 = []
|
728 |
+
saved_k9 = []
|
729 |
+
|
730 |
+
# ddim inverse
|
731 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
732 |
+
timesteps = self.scheduler.timesteps
|
733 |
+
|
734 |
+
num_inverse_steps = 100
|
735 |
+
self.inverse_scheduler.set_timesteps(num_inverse_steps, device=device)
|
736 |
+
inverse_timesteps, num_inverse_steps = self.get_inverse_timesteps(num_inverse_steps, 1, device)
|
737 |
+
num_warmup_steps = len(inverse_timesteps) - num_inverse_steps * self.inverse_scheduler.order
|
738 |
+
|
739 |
+
with self.progress_bar(total=num_inverse_steps-1) as progress_bar:
|
740 |
+
for i, t in enumerate(inverse_timesteps[1:]):
|
741 |
+
# expand the latents if we are doing classifier free guidance
|
742 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
743 |
+
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)
|
744 |
+
|
745 |
+
noise_pred = self.unet(
|
746 |
+
latent_model_input,
|
747 |
+
t,
|
748 |
+
encoder_hidden_states=prompt_embeds,
|
749 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
750 |
+
**kwargs,
|
751 |
+
).sample
|
752 |
+
|
753 |
+
if t in timesteps:
|
754 |
+
saved_features0.append(self.unet.up_blocks[1].resnets[0].out_layers_features.cpu())
|
755 |
+
saved_features1.append(self.unet.up_blocks[1].resnets[1].out_layers_features.cpu())
|
756 |
+
saved_features2.append(self.unet.up_blocks[2].resnets[0].out_layers_features.cpu())
|
757 |
+
saved_q4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.q.cpu())
|
758 |
+
saved_k4.append(self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.k.cpu())
|
759 |
+
saved_q5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.q.cpu())
|
760 |
+
saved_k5.append(self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.k.cpu())
|
761 |
+
saved_q6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.q.cpu())
|
762 |
+
saved_k6.append(self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.k.cpu())
|
763 |
+
saved_q7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.q.cpu())
|
764 |
+
saved_k7.append(self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.k.cpu())
|
765 |
+
saved_q8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.q.cpu())
|
766 |
+
saved_k8.append(self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.k.cpu())
|
767 |
+
saved_q9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.q.cpu())
|
768 |
+
saved_k9.append(self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.k.cpu())
|
769 |
+
|
770 |
+
|
771 |
+
if do_classifier_free_guidance:
|
772 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
773 |
+
noise_pred = noise_pred_uncond + 1 * (noise_pred_text - noise_pred_uncond)
|
774 |
+
|
775 |
+
# compute the previous noisy sample x_t -> x_t-1
|
776 |
+
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample
|
777 |
+
if i == len(inverse_timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0):
|
778 |
+
progress_bar.update()
|
779 |
+
|
780 |
+
saved_features0.reverse()
|
781 |
+
saved_features1.reverse()
|
782 |
+
saved_features2.reverse()
|
783 |
+
saved_q4.reverse()
|
784 |
+
saved_k4.reverse()
|
785 |
+
saved_q5.reverse()
|
786 |
+
saved_k5.reverse()
|
787 |
+
saved_q6.reverse()
|
788 |
+
saved_k6.reverse()
|
789 |
+
saved_q7.reverse()
|
790 |
+
saved_k7.reverse()
|
791 |
+
saved_q8.reverse()
|
792 |
+
saved_k8.reverse()
|
793 |
+
saved_q9.reverse()
|
794 |
+
saved_k9.reverse()
|
795 |
+
|
796 |
+
# video sampling
|
797 |
+
prompt_embeds = self._encode_prompt(
|
798 |
+
prompt,
|
799 |
+
device,
|
800 |
+
num_videos_per_prompt,
|
801 |
+
do_classifier_free_guidance,
|
802 |
+
negative_prompt,
|
803 |
+
prompt_embeds=None,
|
804 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
805 |
+
)
|
806 |
+
|
807 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
808 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
809 |
+
for i, t in enumerate(timesteps):
|
810 |
+
torch.cuda.empty_cache()
|
811 |
+
|
812 |
+
# expand the latents if we are doing classifier free guidance
|
813 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
814 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
815 |
+
|
816 |
+
# inject features
|
817 |
+
if i < kwargs["inject_step"]:
|
818 |
+
self.unet.up_blocks[1].resnets[0].out_layers_inject_features = saved_features0[i].to(device)
|
819 |
+
self.unet.up_blocks[1].resnets[1].out_layers_inject_features = saved_features1[i].to(device)
|
820 |
+
self.unet.up_blocks[2].resnets[0].out_layers_inject_features = saved_features2[i].to(device)
|
821 |
+
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q4[i].to(device)
|
822 |
+
self.unet.up_blocks[1].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k4[i].to(device)
|
823 |
+
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q5[i].to(device)
|
824 |
+
self.unet.up_blocks[1].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k5[i].to(device)
|
825 |
+
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q6[i].to(device)
|
826 |
+
self.unet.up_blocks[2].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k6[i].to(device)
|
827 |
+
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_q = saved_q7[i].to(device)
|
828 |
+
self.unet.up_blocks[2].attentions[1].transformer_blocks[0].attn1.inject_k = saved_k7[i].to(device)
|
829 |
+
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_q = saved_q8[i].to(device)
|
830 |
+
self.unet.up_blocks[2].attentions[2].transformer_blocks[0].attn1.inject_k = saved_k8[i].to(device)
|
831 |
+
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_q = saved_q9[i].to(device)
|
832 |
+
self.unet.up_blocks[3].attentions[0].transformer_blocks[0].attn1.inject_k = saved_k9[i].to(device)
|
833 |
+
else:
|
834 |
+
self.clean_features()
|
835 |
+
|
836 |
+
noise_pred = self.unet(
|
837 |
+
latent_model_input,
|
838 |
+
t,
|
839 |
+
encoder_hidden_states=prompt_embeds,
|
840 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
841 |
+
**kwargs,
|
842 |
+
).sample
|
843 |
+
|
844 |
+
self.clean_features()
|
845 |
+
|
846 |
+
# perform guidance
|
847 |
+
if do_classifier_free_guidance:
|
848 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
849 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
850 |
+
|
851 |
+
# compute the previous noisy sample x_t -> x_t-1
|
852 |
+
step_dict = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
|
853 |
+
latents = step_dict.prev_sample
|
854 |
+
|
855 |
+
# call the callback, if provided
|
856 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
857 |
+
progress_bar.update()
|
858 |
+
if callback is not None and i % callback_steps == 0:
|
859 |
+
callback(i, t, latents)
|
860 |
+
|
861 |
+
# If we do sequential model offloading, let's offload unet
|
862 |
+
# manually for max memory savings
|
863 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
864 |
+
self.unet.to("cpu")
|
865 |
+
torch.cuda.empty_cache()
|
866 |
+
# Post-processing
|
867 |
+
video = self.decode_latents(latents)
|
868 |
+
|
869 |
+
# Convert to tensor
|
870 |
+
if output_type == "tensor":
|
871 |
+
video = torch.from_numpy(video)
|
872 |
+
|
873 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
874 |
+
self.final_offload_hook.offload()
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return video
|
878 |
+
|
879 |
+
return FlattenPipelineOutput(videos=video)
|
models/resnet.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
class TemporalConv1d(nn.Conv1d):
|
21 |
+
def forward(self, x):
|
22 |
+
b, c, f, h, w = x.shape
|
23 |
+
y = rearrange(x.clone(), "b c f h w -> (b h w) c f")
|
24 |
+
y = super().forward(y)
|
25 |
+
y = rearrange(y, "(b h w) c f -> b c f h w", b=b, h=h, w=w)
|
26 |
+
return y
|
27 |
+
|
28 |
+
|
29 |
+
class Upsample3D(nn.Module):
|
30 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
31 |
+
super().__init__()
|
32 |
+
self.channels = channels
|
33 |
+
self.out_channels = out_channels or channels
|
34 |
+
self.use_conv = use_conv
|
35 |
+
self.use_conv_transpose = use_conv_transpose
|
36 |
+
self.name = name
|
37 |
+
|
38 |
+
conv = None
|
39 |
+
if use_conv_transpose:
|
40 |
+
raise NotImplementedError
|
41 |
+
elif use_conv:
|
42 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
43 |
+
|
44 |
+
if name == "conv":
|
45 |
+
self.conv = conv
|
46 |
+
else:
|
47 |
+
self.Conv2d_0 = conv
|
48 |
+
|
49 |
+
def forward(self, hidden_states, output_size=None):
|
50 |
+
assert hidden_states.shape[1] == self.channels
|
51 |
+
|
52 |
+
if self.use_conv_transpose:
|
53 |
+
raise NotImplementedError
|
54 |
+
|
55 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
56 |
+
dtype = hidden_states.dtype
|
57 |
+
if dtype == torch.bfloat16:
|
58 |
+
hidden_states = hidden_states.to(torch.float32)
|
59 |
+
|
60 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
61 |
+
if hidden_states.shape[0] >= 64:
|
62 |
+
hidden_states = hidden_states.contiguous()
|
63 |
+
|
64 |
+
# if `output_size` is passed we force the interpolation output
|
65 |
+
# size and do not make use of `scale_factor=2`
|
66 |
+
if output_size is None:
|
67 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
68 |
+
else:
|
69 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
70 |
+
|
71 |
+
# If the input is bfloat16, we cast back to bfloat16
|
72 |
+
if dtype == torch.bfloat16:
|
73 |
+
hidden_states = hidden_states.to(dtype)
|
74 |
+
|
75 |
+
if self.use_conv:
|
76 |
+
if self.name == "conv":
|
77 |
+
hidden_states = self.conv(hidden_states)
|
78 |
+
else:
|
79 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
80 |
+
|
81 |
+
return hidden_states
|
82 |
+
|
83 |
+
|
84 |
+
class Downsample3D(nn.Module):
|
85 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
86 |
+
super().__init__()
|
87 |
+
self.channels = channels
|
88 |
+
self.out_channels = out_channels or channels
|
89 |
+
self.use_conv = use_conv
|
90 |
+
self.padding = padding
|
91 |
+
stride = 2
|
92 |
+
self.name = name
|
93 |
+
|
94 |
+
if use_conv:
|
95 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
96 |
+
else:
|
97 |
+
raise NotImplementedError
|
98 |
+
|
99 |
+
if name == "conv":
|
100 |
+
self.Conv2d_0 = conv
|
101 |
+
self.conv = conv
|
102 |
+
elif name == "Conv2d_0":
|
103 |
+
self.conv = conv
|
104 |
+
else:
|
105 |
+
self.conv = conv
|
106 |
+
|
107 |
+
def forward(self, hidden_states):
|
108 |
+
assert hidden_states.shape[1] == self.channels
|
109 |
+
if self.use_conv and self.padding == 0:
|
110 |
+
raise NotImplementedError
|
111 |
+
|
112 |
+
assert hidden_states.shape[1] == self.channels
|
113 |
+
hidden_states = self.conv(hidden_states)
|
114 |
+
|
115 |
+
return hidden_states
|
116 |
+
|
117 |
+
|
118 |
+
class ResnetBlock3D(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
*,
|
122 |
+
in_channels,
|
123 |
+
out_channels=None,
|
124 |
+
conv_shortcut=False,
|
125 |
+
dropout=0.0,
|
126 |
+
temb_channels=512,
|
127 |
+
groups=32,
|
128 |
+
groups_out=None,
|
129 |
+
pre_norm=True,
|
130 |
+
eps=1e-6,
|
131 |
+
non_linearity="swish",
|
132 |
+
time_embedding_norm="default",
|
133 |
+
output_scale_factor=1.0,
|
134 |
+
use_in_shortcut=None,
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
self.pre_norm = pre_norm
|
138 |
+
self.pre_norm = True
|
139 |
+
self.in_channels = in_channels
|
140 |
+
out_channels = in_channels if out_channels is None else out_channels
|
141 |
+
self.out_channels = out_channels
|
142 |
+
self.use_conv_shortcut = conv_shortcut
|
143 |
+
self.time_embedding_norm = time_embedding_norm
|
144 |
+
self.output_scale_factor = output_scale_factor
|
145 |
+
|
146 |
+
if groups_out is None:
|
147 |
+
groups_out = groups
|
148 |
+
|
149 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
150 |
+
|
151 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
152 |
+
|
153 |
+
if temb_channels is not None:
|
154 |
+
if self.time_embedding_norm == "default":
|
155 |
+
time_emb_proj_out_channels = out_channels
|
156 |
+
elif self.time_embedding_norm == "scale_shift":
|
157 |
+
time_emb_proj_out_channels = out_channels * 2
|
158 |
+
else:
|
159 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
160 |
+
|
161 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
162 |
+
else:
|
163 |
+
self.time_emb_proj = None
|
164 |
+
|
165 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
166 |
+
self.dropout = torch.nn.Dropout(dropout)
|
167 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
168 |
+
|
169 |
+
if non_linearity == "swish":
|
170 |
+
self.nonlinearity = lambda x: F.silu(x)
|
171 |
+
elif non_linearity == "mish":
|
172 |
+
self.nonlinearity = Mish()
|
173 |
+
elif non_linearity == "silu":
|
174 |
+
self.nonlinearity = nn.SiLU()
|
175 |
+
|
176 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
177 |
+
|
178 |
+
self.conv_shortcut = None
|
179 |
+
if self.use_in_shortcut:
|
180 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
181 |
+
|
182 |
+
# save features
|
183 |
+
self.out_layers_features = None
|
184 |
+
self.out_layers_inject_features = None
|
185 |
+
|
186 |
+
def forward(self, input_tensor, temb):
|
187 |
+
hidden_states = input_tensor
|
188 |
+
|
189 |
+
hidden_states = self.norm1(hidden_states)
|
190 |
+
hidden_states = self.nonlinearity(hidden_states)
|
191 |
+
|
192 |
+
hidden_states = self.conv1(hidden_states)
|
193 |
+
|
194 |
+
if temb is not None:
|
195 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
196 |
+
|
197 |
+
if temb is not None and self.time_embedding_norm == "default":
|
198 |
+
hidden_states = hidden_states + temb
|
199 |
+
|
200 |
+
hidden_states = self.norm2(hidden_states)
|
201 |
+
|
202 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
203 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
204 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
205 |
+
|
206 |
+
hidden_states = self.nonlinearity(hidden_states)
|
207 |
+
|
208 |
+
hidden_states = self.dropout(hidden_states)
|
209 |
+
hidden_states = self.conv2(hidden_states)
|
210 |
+
|
211 |
+
if self.conv_shortcut is not None:
|
212 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
213 |
+
|
214 |
+
# save features
|
215 |
+
self.out_layers_features = hidden_states
|
216 |
+
if self.out_layers_inject_features is not None:
|
217 |
+
hidden_states = self.out_layers_inject_features
|
218 |
+
|
219 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
220 |
+
|
221 |
+
return output_tensor
|
222 |
+
|
223 |
+
|
224 |
+
class Mish(torch.nn.Module):
|
225 |
+
def forward(self, hidden_states):
|
226 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
models/unet.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput, logging
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from .unet_blocks import (
|
18 |
+
CrossAttnDownBlock3D,
|
19 |
+
CrossAttnUpBlock3D,
|
20 |
+
DownBlock3D,
|
21 |
+
UNetMidBlock3DCrossAttn,
|
22 |
+
UpBlock3D,
|
23 |
+
get_down_block,
|
24 |
+
get_up_block,
|
25 |
+
)
|
26 |
+
from .resnet import InflatedConv3d
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class UNet3DConditionOutput(BaseOutput):
|
34 |
+
sample: torch.FloatTensor
|
35 |
+
|
36 |
+
|
37 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
38 |
+
_supports_gradient_checkpointing = True
|
39 |
+
|
40 |
+
@register_to_config
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
sample_size: Optional[int] = None,
|
44 |
+
in_channels: int = 4,
|
45 |
+
out_channels: int = 4,
|
46 |
+
center_input_sample: bool = False,
|
47 |
+
flip_sin_to_cos: bool = True,
|
48 |
+
freq_shift: int = 0,
|
49 |
+
down_block_types: Tuple[str] = (
|
50 |
+
"CrossAttnDownBlock3D",
|
51 |
+
"CrossAttnDownBlock3D",
|
52 |
+
"CrossAttnDownBlock3D",
|
53 |
+
"DownBlock3D",
|
54 |
+
),
|
55 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
56 |
+
up_block_types: Tuple[str] = (
|
57 |
+
"UpBlock3D",
|
58 |
+
"CrossAttnUpBlock3D",
|
59 |
+
"CrossAttnUpBlock3D",
|
60 |
+
"CrossAttnUpBlock3D"
|
61 |
+
),
|
62 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
63 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
64 |
+
layers_per_block: int = 2,
|
65 |
+
downsample_padding: int = 1,
|
66 |
+
mid_block_scale_factor: float = 1,
|
67 |
+
act_fn: str = "silu",
|
68 |
+
norm_num_groups: int = 32,
|
69 |
+
norm_eps: float = 1e-5,
|
70 |
+
cross_attention_dim: int = 1280,
|
71 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
72 |
+
dual_cross_attention: bool = False,
|
73 |
+
use_linear_projection: bool = False,
|
74 |
+
class_embed_type: Optional[str] = None,
|
75 |
+
num_class_embeds: Optional[int] = None,
|
76 |
+
upcast_attention: bool = False,
|
77 |
+
resnet_time_scale_shift: str = "default",
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.sample_size = sample_size
|
82 |
+
time_embed_dim = block_out_channels[0] * 4
|
83 |
+
|
84 |
+
# input
|
85 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
86 |
+
|
87 |
+
# time
|
88 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
89 |
+
timestep_input_dim = block_out_channels[0]
|
90 |
+
|
91 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
92 |
+
|
93 |
+
# class embedding
|
94 |
+
if class_embed_type is None and num_class_embeds is not None:
|
95 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
96 |
+
elif class_embed_type == "timestep":
|
97 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
98 |
+
elif class_embed_type == "identity":
|
99 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
100 |
+
else:
|
101 |
+
self.class_embedding = None
|
102 |
+
|
103 |
+
self.down_blocks = nn.ModuleList([])
|
104 |
+
self.mid_block = None
|
105 |
+
self.up_blocks = nn.ModuleList([])
|
106 |
+
|
107 |
+
if isinstance(only_cross_attention, bool):
|
108 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
109 |
+
|
110 |
+
if isinstance(attention_head_dim, int):
|
111 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
112 |
+
|
113 |
+
# down
|
114 |
+
output_channel = block_out_channels[0]
|
115 |
+
for i, down_block_type in enumerate(down_block_types):
|
116 |
+
input_channel = output_channel
|
117 |
+
output_channel = block_out_channels[i]
|
118 |
+
is_final_block = i == len(block_out_channels) - 1
|
119 |
+
|
120 |
+
down_block = get_down_block(
|
121 |
+
down_block_type,
|
122 |
+
num_layers=layers_per_block,
|
123 |
+
in_channels=input_channel,
|
124 |
+
out_channels=output_channel,
|
125 |
+
temb_channels=time_embed_dim,
|
126 |
+
add_downsample=not is_final_block,
|
127 |
+
resnet_eps=norm_eps,
|
128 |
+
resnet_act_fn=act_fn,
|
129 |
+
resnet_groups=norm_num_groups,
|
130 |
+
cross_attention_dim=cross_attention_dim,
|
131 |
+
attn_num_head_channels=attention_head_dim[i],
|
132 |
+
downsample_padding=downsample_padding,
|
133 |
+
dual_cross_attention=dual_cross_attention,
|
134 |
+
use_linear_projection=use_linear_projection,
|
135 |
+
only_cross_attention=only_cross_attention[i],
|
136 |
+
upcast_attention=upcast_attention,
|
137 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
138 |
+
)
|
139 |
+
self.down_blocks.append(down_block)
|
140 |
+
|
141 |
+
# mid
|
142 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
143 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
144 |
+
in_channels=block_out_channels[-1],
|
145 |
+
temb_channels=time_embed_dim,
|
146 |
+
resnet_eps=norm_eps,
|
147 |
+
resnet_act_fn=act_fn,
|
148 |
+
output_scale_factor=mid_block_scale_factor,
|
149 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
150 |
+
cross_attention_dim=cross_attention_dim,
|
151 |
+
attn_num_head_channels=attention_head_dim[-1],
|
152 |
+
resnet_groups=norm_num_groups,
|
153 |
+
dual_cross_attention=dual_cross_attention,
|
154 |
+
use_linear_projection=use_linear_projection,
|
155 |
+
upcast_attention=upcast_attention,
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
159 |
+
|
160 |
+
# count how many layers upsample the videos
|
161 |
+
self.num_upsamplers = 0
|
162 |
+
|
163 |
+
# up
|
164 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
165 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
166 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
167 |
+
output_channel = reversed_block_out_channels[0]
|
168 |
+
for i, up_block_type in enumerate(up_block_types):
|
169 |
+
is_final_block = i == len(block_out_channels) - 1
|
170 |
+
|
171 |
+
prev_output_channel = output_channel
|
172 |
+
output_channel = reversed_block_out_channels[i]
|
173 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
174 |
+
|
175 |
+
# add upsample block for all BUT final layer
|
176 |
+
if not is_final_block:
|
177 |
+
add_upsample = True
|
178 |
+
self.num_upsamplers += 1
|
179 |
+
else:
|
180 |
+
add_upsample = False
|
181 |
+
|
182 |
+
up_block = get_up_block(
|
183 |
+
up_block_type,
|
184 |
+
num_layers=layers_per_block + 1,
|
185 |
+
in_channels=input_channel,
|
186 |
+
out_channels=output_channel,
|
187 |
+
prev_output_channel=prev_output_channel,
|
188 |
+
temb_channels=time_embed_dim,
|
189 |
+
add_upsample=add_upsample,
|
190 |
+
resnet_eps=norm_eps,
|
191 |
+
resnet_act_fn=act_fn,
|
192 |
+
resnet_groups=norm_num_groups,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
195 |
+
dual_cross_attention=dual_cross_attention,
|
196 |
+
use_linear_projection=use_linear_projection,
|
197 |
+
only_cross_attention=only_cross_attention[i],
|
198 |
+
upcast_attention=upcast_attention,
|
199 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
200 |
+
)
|
201 |
+
self.up_blocks.append(up_block)
|
202 |
+
prev_output_channel = output_channel
|
203 |
+
|
204 |
+
# out
|
205 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
206 |
+
self.conv_act = nn.SiLU()
|
207 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
208 |
+
|
209 |
+
def set_attention_slice(self, slice_size):
|
210 |
+
r"""
|
211 |
+
Enable sliced attention computation.
|
212 |
+
|
213 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
214 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
218 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
219 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
220 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
221 |
+
must be a multiple of `slice_size`.
|
222 |
+
"""
|
223 |
+
sliceable_head_dims = []
|
224 |
+
|
225 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
226 |
+
if hasattr(module, "set_attention_slice"):
|
227 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
228 |
+
|
229 |
+
for child in module.children():
|
230 |
+
fn_recursive_retrieve_slicable_dims(child)
|
231 |
+
|
232 |
+
# retrieve number of attention layers
|
233 |
+
for module in self.children():
|
234 |
+
fn_recursive_retrieve_slicable_dims(module)
|
235 |
+
|
236 |
+
num_slicable_layers = len(sliceable_head_dims)
|
237 |
+
|
238 |
+
if slice_size == "auto":
|
239 |
+
# half the attention head size is usually a good trade-off between
|
240 |
+
# speed and memory
|
241 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
242 |
+
elif slice_size == "max":
|
243 |
+
# make smallest slice possible
|
244 |
+
slice_size = num_slicable_layers * [1]
|
245 |
+
|
246 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
247 |
+
|
248 |
+
if len(slice_size) != len(sliceable_head_dims):
|
249 |
+
raise ValueError(
|
250 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
251 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
252 |
+
)
|
253 |
+
|
254 |
+
for i in range(len(slice_size)):
|
255 |
+
size = slice_size[i]
|
256 |
+
dim = sliceable_head_dims[i]
|
257 |
+
if size is not None and size > dim:
|
258 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
259 |
+
|
260 |
+
# Recursively walk through all the children.
|
261 |
+
# Any children which exposes the set_attention_slice method
|
262 |
+
# gets the message
|
263 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
264 |
+
if hasattr(module, "set_attention_slice"):
|
265 |
+
module.set_attention_slice(slice_size.pop())
|
266 |
+
|
267 |
+
for child in module.children():
|
268 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
269 |
+
|
270 |
+
reversed_slice_size = list(reversed(slice_size))
|
271 |
+
for module in self.children():
|
272 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
273 |
+
|
274 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
275 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
276 |
+
module.gradient_checkpointing = value
|
277 |
+
|
278 |
+
def forward(
|
279 |
+
self,
|
280 |
+
sample: torch.FloatTensor,
|
281 |
+
timestep: Union[torch.Tensor, float, int],
|
282 |
+
encoder_hidden_states: torch.Tensor,
|
283 |
+
class_labels: Optional[torch.Tensor] = None,
|
284 |
+
attention_mask: Optional[torch.Tensor] = None,
|
285 |
+
return_dict: bool = True,
|
286 |
+
cross_attention_kwargs = None,
|
287 |
+
inter_frame = False,
|
288 |
+
**kwargs,
|
289 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
290 |
+
r"""
|
291 |
+
Args:
|
292 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
293 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
294 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
295 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
296 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
300 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
301 |
+
returning a tuple, the first element is the sample tensor.
|
302 |
+
"""
|
303 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
304 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
305 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
306 |
+
# on the fly if necessary.
|
307 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
308 |
+
kwargs["t"] = timestep
|
309 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
310 |
+
forward_upsample_size = False
|
311 |
+
upsample_size = None
|
312 |
+
|
313 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
314 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
315 |
+
forward_upsample_size = True
|
316 |
+
|
317 |
+
# prepare attention_mask
|
318 |
+
if attention_mask is not None:
|
319 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
320 |
+
attention_mask = attention_mask.unsqueeze(1)
|
321 |
+
|
322 |
+
# center input if necessary
|
323 |
+
if self.config.center_input_sample:
|
324 |
+
sample = 2 * sample - 1.0
|
325 |
+
|
326 |
+
# time
|
327 |
+
timesteps = timestep
|
328 |
+
if not torch.is_tensor(timesteps):
|
329 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
330 |
+
is_mps = sample.device.type == "mps"
|
331 |
+
if isinstance(timestep, float):
|
332 |
+
dtype = torch.float32 if is_mps else torch.float64
|
333 |
+
else:
|
334 |
+
dtype = torch.int32 if is_mps else torch.int64
|
335 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
336 |
+
elif len(timesteps.shape) == 0:
|
337 |
+
timesteps = timesteps[None].to(sample.device)
|
338 |
+
|
339 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
340 |
+
timesteps = timesteps.expand(sample.shape[0])
|
341 |
+
|
342 |
+
t_emb = self.time_proj(timesteps)
|
343 |
+
|
344 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
345 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
346 |
+
# there might be better ways to encapsulate this.
|
347 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
348 |
+
emb = self.time_embedding(t_emb)
|
349 |
+
|
350 |
+
if self.class_embedding is not None:
|
351 |
+
if class_labels is None:
|
352 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
353 |
+
|
354 |
+
if self.config.class_embed_type == "timestep":
|
355 |
+
class_labels = self.time_proj(class_labels)
|
356 |
+
|
357 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
358 |
+
emb = emb + class_emb
|
359 |
+
|
360 |
+
# pre-process
|
361 |
+
sample = self.conv_in(sample)
|
362 |
+
|
363 |
+
# down
|
364 |
+
down_block_res_samples = (sample,)
|
365 |
+
for downsample_block in self.down_blocks:
|
366 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
367 |
+
sample, res_samples = downsample_block(
|
368 |
+
hidden_states=sample,
|
369 |
+
temb=emb,
|
370 |
+
encoder_hidden_states=encoder_hidden_states,
|
371 |
+
attention_mask=attention_mask,
|
372 |
+
inter_frame=inter_frame,
|
373 |
+
**kwargs,
|
374 |
+
)
|
375 |
+
else:
|
376 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
377 |
+
|
378 |
+
down_block_res_samples += res_samples
|
379 |
+
|
380 |
+
# mid
|
381 |
+
sample = self.mid_block(
|
382 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask,
|
383 |
+
inter_frame=inter_frame,
|
384 |
+
**kwargs,
|
385 |
+
)
|
386 |
+
|
387 |
+
# up
|
388 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
389 |
+
is_final_block = i == len(self.up_blocks) - 1
|
390 |
+
|
391 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
392 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
393 |
+
|
394 |
+
# if we have not reached the final block and need to forward the
|
395 |
+
# upsample size, we do it here
|
396 |
+
if not is_final_block and forward_upsample_size:
|
397 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
398 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
399 |
+
sample = upsample_block(
|
400 |
+
hidden_states=sample,
|
401 |
+
temb=emb,
|
402 |
+
res_hidden_states_tuple=res_samples,
|
403 |
+
encoder_hidden_states=encoder_hidden_states,
|
404 |
+
upsample_size=upsample_size,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
inter_frame=inter_frame,
|
407 |
+
**kwargs,
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
sample = upsample_block(
|
411 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
412 |
+
)
|
413 |
+
# post-process
|
414 |
+
sample = self.conv_norm_out(sample)
|
415 |
+
sample = self.conv_act(sample)
|
416 |
+
sample = self.conv_out(sample)
|
417 |
+
|
418 |
+
if not return_dict:
|
419 |
+
return (sample,)
|
420 |
+
|
421 |
+
return UNet3DConditionOutput(sample=sample)
|
422 |
+
|
423 |
+
@classmethod
|
424 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, dtype=torch.float32):
|
425 |
+
if subfolder is not None:
|
426 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
427 |
+
|
428 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
429 |
+
if not os.path.isfile(config_file):
|
430 |
+
raise RuntimeError(f"{config_file} does not exist")
|
431 |
+
with open(config_file, "r") as f:
|
432 |
+
config = json.load(f)
|
433 |
+
config["_class_name"] = cls.__name__
|
434 |
+
config["down_block_types"] = [
|
435 |
+
"CrossAttnDownBlock3D",
|
436 |
+
"CrossAttnDownBlock3D",
|
437 |
+
"CrossAttnDownBlock3D",
|
438 |
+
"DownBlock3D"
|
439 |
+
]
|
440 |
+
config["up_block_types"] = [
|
441 |
+
"UpBlock3D",
|
442 |
+
"CrossAttnUpBlock3D",
|
443 |
+
"CrossAttnUpBlock3D",
|
444 |
+
"CrossAttnUpBlock3D"
|
445 |
+
]
|
446 |
+
|
447 |
+
from diffusers.utils import WEIGHTS_NAME
|
448 |
+
model = cls.from_config(config)
|
449 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
450 |
+
if dtype == torch.float16:
|
451 |
+
model_file = model_file.replace(".bin", ".fp16.bin")
|
452 |
+
model = model.to(dtype=dtype)
|
453 |
+
if not os.path.isfile(model_file):
|
454 |
+
raise RuntimeError(f"{model_file} does not exist")
|
455 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
456 |
+
# for k, v in model.state_dict().items():
|
457 |
+
# if '_temp.' in k:
|
458 |
+
# state_dict.update({k: v})
|
459 |
+
model.load_state_dict(state_dict, strict=False)
|
460 |
+
|
461 |
+
return model
|
models/unet_blocks.py
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
):
|
29 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
30 |
+
if down_block_type == "DownBlock3D":
|
31 |
+
return DownBlock3D(
|
32 |
+
num_layers=num_layers,
|
33 |
+
in_channels=in_channels,
|
34 |
+
out_channels=out_channels,
|
35 |
+
temb_channels=temb_channels,
|
36 |
+
add_downsample=add_downsample,
|
37 |
+
resnet_eps=resnet_eps,
|
38 |
+
resnet_act_fn=resnet_act_fn,
|
39 |
+
resnet_groups=resnet_groups,
|
40 |
+
downsample_padding=downsample_padding,
|
41 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
42 |
+
)
|
43 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
44 |
+
if cross_attention_dim is None:
|
45 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
46 |
+
return CrossAttnDownBlock3D(
|
47 |
+
num_layers=num_layers,
|
48 |
+
in_channels=in_channels,
|
49 |
+
out_channels=out_channels,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
cross_attention_dim=cross_attention_dim,
|
57 |
+
attn_num_head_channels=attn_num_head_channels,
|
58 |
+
dual_cross_attention=dual_cross_attention,
|
59 |
+
use_linear_projection=use_linear_projection,
|
60 |
+
only_cross_attention=only_cross_attention,
|
61 |
+
upcast_attention=upcast_attention,
|
62 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
63 |
+
)
|
64 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
65 |
+
|
66 |
+
|
67 |
+
def get_up_block(
|
68 |
+
up_block_type,
|
69 |
+
num_layers,
|
70 |
+
in_channels,
|
71 |
+
out_channels,
|
72 |
+
prev_output_channel,
|
73 |
+
temb_channels,
|
74 |
+
add_upsample,
|
75 |
+
resnet_eps,
|
76 |
+
resnet_act_fn,
|
77 |
+
attn_num_head_channels,
|
78 |
+
resnet_groups=None,
|
79 |
+
cross_attention_dim=None,
|
80 |
+
dual_cross_attention=False,
|
81 |
+
use_linear_projection=False,
|
82 |
+
only_cross_attention=False,
|
83 |
+
upcast_attention=False,
|
84 |
+
resnet_time_scale_shift="default",
|
85 |
+
):
|
86 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
87 |
+
if up_block_type == "UpBlock3D":
|
88 |
+
return UpBlock3D(
|
89 |
+
num_layers=num_layers,
|
90 |
+
in_channels=in_channels,
|
91 |
+
out_channels=out_channels,
|
92 |
+
prev_output_channel=prev_output_channel,
|
93 |
+
temb_channels=temb_channels,
|
94 |
+
add_upsample=add_upsample,
|
95 |
+
resnet_eps=resnet_eps,
|
96 |
+
resnet_act_fn=resnet_act_fn,
|
97 |
+
resnet_groups=resnet_groups,
|
98 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
+
)
|
100 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
101 |
+
if cross_attention_dim is None:
|
102 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
103 |
+
return CrossAttnUpBlock3D(
|
104 |
+
num_layers=num_layers,
|
105 |
+
in_channels=in_channels,
|
106 |
+
out_channels=out_channels,
|
107 |
+
prev_output_channel=prev_output_channel,
|
108 |
+
temb_channels=temb_channels,
|
109 |
+
add_upsample=add_upsample,
|
110 |
+
resnet_eps=resnet_eps,
|
111 |
+
resnet_act_fn=resnet_act_fn,
|
112 |
+
resnet_groups=resnet_groups,
|
113 |
+
cross_attention_dim=cross_attention_dim,
|
114 |
+
attn_num_head_channels=attn_num_head_channels,
|
115 |
+
dual_cross_attention=dual_cross_attention,
|
116 |
+
use_linear_projection=use_linear_projection,
|
117 |
+
only_cross_attention=only_cross_attention,
|
118 |
+
upcast_attention=upcast_attention,
|
119 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
120 |
+
)
|
121 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
122 |
+
|
123 |
+
|
124 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
in_channels: int,
|
128 |
+
temb_channels: int,
|
129 |
+
dropout: float = 0.0,
|
130 |
+
num_layers: int = 1,
|
131 |
+
resnet_eps: float = 1e-6,
|
132 |
+
resnet_time_scale_shift: str = "default",
|
133 |
+
resnet_act_fn: str = "swish",
|
134 |
+
resnet_groups: int = 32,
|
135 |
+
resnet_pre_norm: bool = True,
|
136 |
+
attn_num_head_channels=1,
|
137 |
+
output_scale_factor=1.0,
|
138 |
+
cross_attention_dim=1280,
|
139 |
+
dual_cross_attention=False,
|
140 |
+
use_linear_projection=False,
|
141 |
+
upcast_attention=False,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.has_cross_attention = True
|
146 |
+
self.attn_num_head_channels = attn_num_head_channels
|
147 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
148 |
+
|
149 |
+
# there is always at least one resnet
|
150 |
+
resnets = [
|
151 |
+
ResnetBlock3D(
|
152 |
+
in_channels=in_channels,
|
153 |
+
out_channels=in_channels,
|
154 |
+
temb_channels=temb_channels,
|
155 |
+
eps=resnet_eps,
|
156 |
+
groups=resnet_groups,
|
157 |
+
dropout=dropout,
|
158 |
+
time_embedding_norm=resnet_time_scale_shift,
|
159 |
+
non_linearity=resnet_act_fn,
|
160 |
+
output_scale_factor=output_scale_factor,
|
161 |
+
pre_norm=resnet_pre_norm,
|
162 |
+
)
|
163 |
+
]
|
164 |
+
attentions = []
|
165 |
+
|
166 |
+
for _ in range(num_layers):
|
167 |
+
if dual_cross_attention:
|
168 |
+
raise NotImplementedError
|
169 |
+
attentions.append(
|
170 |
+
Transformer3DModel(
|
171 |
+
attn_num_head_channels,
|
172 |
+
in_channels // attn_num_head_channels,
|
173 |
+
in_channels=in_channels,
|
174 |
+
num_layers=1,
|
175 |
+
cross_attention_dim=cross_attention_dim,
|
176 |
+
norm_num_groups=resnet_groups,
|
177 |
+
use_linear_projection=use_linear_projection,
|
178 |
+
upcast_attention=upcast_attention,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
resnets.append(
|
182 |
+
ResnetBlock3D(
|
183 |
+
in_channels=in_channels,
|
184 |
+
out_channels=in_channels,
|
185 |
+
temb_channels=temb_channels,
|
186 |
+
eps=resnet_eps,
|
187 |
+
groups=resnet_groups,
|
188 |
+
dropout=dropout,
|
189 |
+
time_embedding_norm=resnet_time_scale_shift,
|
190 |
+
non_linearity=resnet_act_fn,
|
191 |
+
output_scale_factor=output_scale_factor,
|
192 |
+
pre_norm=resnet_pre_norm,
|
193 |
+
)
|
194 |
+
)
|
195 |
+
|
196 |
+
self.attentions = nn.ModuleList(attentions)
|
197 |
+
self.resnets = nn.ModuleList(resnets)
|
198 |
+
|
199 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, inter_frame=False, **kwargs):
|
200 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
201 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
202 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, inter_frame=inter_frame, **kwargs).sample
|
203 |
+
hidden_states = resnet(hidden_states, temb)
|
204 |
+
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
|
208 |
+
class CrossAttnDownBlock3D(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
in_channels: int,
|
212 |
+
out_channels: int,
|
213 |
+
temb_channels: int,
|
214 |
+
dropout: float = 0.0,
|
215 |
+
num_layers: int = 1,
|
216 |
+
resnet_eps: float = 1e-6,
|
217 |
+
resnet_time_scale_shift: str = "default",
|
218 |
+
resnet_act_fn: str = "swish",
|
219 |
+
resnet_groups: int = 32,
|
220 |
+
resnet_pre_norm: bool = True,
|
221 |
+
attn_num_head_channels=1,
|
222 |
+
cross_attention_dim=1280,
|
223 |
+
output_scale_factor=1.0,
|
224 |
+
downsample_padding=1,
|
225 |
+
add_downsample=True,
|
226 |
+
dual_cross_attention=False,
|
227 |
+
use_linear_projection=False,
|
228 |
+
only_cross_attention=False,
|
229 |
+
upcast_attention=False,
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
resnets = []
|
233 |
+
attentions = []
|
234 |
+
|
235 |
+
self.has_cross_attention = True
|
236 |
+
self.attn_num_head_channels = attn_num_head_channels
|
237 |
+
|
238 |
+
for i in range(num_layers):
|
239 |
+
in_channels = in_channels if i == 0 else out_channels
|
240 |
+
resnets.append(
|
241 |
+
ResnetBlock3D(
|
242 |
+
in_channels=in_channels,
|
243 |
+
out_channels=out_channels,
|
244 |
+
temb_channels=temb_channels,
|
245 |
+
eps=resnet_eps,
|
246 |
+
groups=resnet_groups,
|
247 |
+
dropout=dropout,
|
248 |
+
time_embedding_norm=resnet_time_scale_shift,
|
249 |
+
non_linearity=resnet_act_fn,
|
250 |
+
output_scale_factor=output_scale_factor,
|
251 |
+
pre_norm=resnet_pre_norm,
|
252 |
+
)
|
253 |
+
)
|
254 |
+
if dual_cross_attention:
|
255 |
+
raise NotImplementedError
|
256 |
+
attentions.append(
|
257 |
+
Transformer3DModel(
|
258 |
+
attn_num_head_channels,
|
259 |
+
out_channels // attn_num_head_channels,
|
260 |
+
in_channels=out_channels,
|
261 |
+
num_layers=1,
|
262 |
+
cross_attention_dim=cross_attention_dim,
|
263 |
+
norm_num_groups=resnet_groups,
|
264 |
+
use_linear_projection=use_linear_projection,
|
265 |
+
only_cross_attention=only_cross_attention,
|
266 |
+
upcast_attention=upcast_attention,
|
267 |
+
)
|
268 |
+
)
|
269 |
+
self.attentions = nn.ModuleList(attentions)
|
270 |
+
self.resnets = nn.ModuleList(resnets)
|
271 |
+
|
272 |
+
if add_downsample:
|
273 |
+
self.downsamplers = nn.ModuleList(
|
274 |
+
[
|
275 |
+
Downsample3D(
|
276 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
277 |
+
)
|
278 |
+
]
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
self.downsamplers = None
|
282 |
+
|
283 |
+
self.gradient_checkpointing = False
|
284 |
+
|
285 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, inter_frame=False, **kwargs):
|
286 |
+
output_states = ()
|
287 |
+
|
288 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
289 |
+
if self.training and self.gradient_checkpointing:
|
290 |
+
|
291 |
+
def create_custom_forward(module, return_dict=None, inter_frame=None):
|
292 |
+
def custom_forward(*inputs):
|
293 |
+
if return_dict is not None:
|
294 |
+
return module(*inputs, return_dict=return_dict, inter_frame=inter_frame)
|
295 |
+
else:
|
296 |
+
return module(*inputs)
|
297 |
+
|
298 |
+
return custom_forward
|
299 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
300 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
301 |
+
create_custom_forward(attn, return_dict=False, inter_frame=inter_frame),
|
302 |
+
hidden_states,
|
303 |
+
encoder_hidden_states,
|
304 |
+
)[0]
|
305 |
+
else:
|
306 |
+
hidden_states = resnet(hidden_states, temb)
|
307 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, inter_frame=inter_frame, **kwargs).sample
|
308 |
+
|
309 |
+
output_states += (hidden_states,)
|
310 |
+
|
311 |
+
if self.downsamplers is not None:
|
312 |
+
for downsampler in self.downsamplers:
|
313 |
+
hidden_states = downsampler(hidden_states)
|
314 |
+
|
315 |
+
output_states += (hidden_states,)
|
316 |
+
|
317 |
+
return hidden_states, output_states
|
318 |
+
|
319 |
+
|
320 |
+
class DownBlock3D(nn.Module):
|
321 |
+
def __init__(
|
322 |
+
self,
|
323 |
+
in_channels: int,
|
324 |
+
out_channels: int,
|
325 |
+
temb_channels: int,
|
326 |
+
dropout: float = 0.0,
|
327 |
+
num_layers: int = 1,
|
328 |
+
resnet_eps: float = 1e-6,
|
329 |
+
resnet_time_scale_shift: str = "default",
|
330 |
+
resnet_act_fn: str = "swish",
|
331 |
+
resnet_groups: int = 32,
|
332 |
+
resnet_pre_norm: bool = True,
|
333 |
+
output_scale_factor=1.0,
|
334 |
+
add_downsample=True,
|
335 |
+
downsample_padding=1,
|
336 |
+
):
|
337 |
+
super().__init__()
|
338 |
+
resnets = []
|
339 |
+
|
340 |
+
for i in range(num_layers):
|
341 |
+
in_channels = in_channels if i == 0 else out_channels
|
342 |
+
resnets.append(
|
343 |
+
ResnetBlock3D(
|
344 |
+
in_channels=in_channels,
|
345 |
+
out_channels=out_channels,
|
346 |
+
temb_channels=temb_channels,
|
347 |
+
eps=resnet_eps,
|
348 |
+
groups=resnet_groups,
|
349 |
+
dropout=dropout,
|
350 |
+
time_embedding_norm=resnet_time_scale_shift,
|
351 |
+
non_linearity=resnet_act_fn,
|
352 |
+
output_scale_factor=output_scale_factor,
|
353 |
+
pre_norm=resnet_pre_norm,
|
354 |
+
)
|
355 |
+
)
|
356 |
+
|
357 |
+
self.resnets = nn.ModuleList(resnets)
|
358 |
+
|
359 |
+
if add_downsample:
|
360 |
+
self.downsamplers = nn.ModuleList(
|
361 |
+
[
|
362 |
+
Downsample3D(
|
363 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
364 |
+
)
|
365 |
+
]
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
self.downsamplers = None
|
369 |
+
|
370 |
+
self.gradient_checkpointing = False
|
371 |
+
|
372 |
+
def forward(self, hidden_states, temb=None):
|
373 |
+
output_states = ()
|
374 |
+
|
375 |
+
for resnet in self.resnets:
|
376 |
+
if self.training and self.gradient_checkpointing:
|
377 |
+
|
378 |
+
def create_custom_forward(module):
|
379 |
+
def custom_forward(*inputs):
|
380 |
+
return module(*inputs)
|
381 |
+
|
382 |
+
return custom_forward
|
383 |
+
|
384 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
385 |
+
else:
|
386 |
+
hidden_states = resnet(hidden_states, temb)
|
387 |
+
|
388 |
+
output_states += (hidden_states,)
|
389 |
+
|
390 |
+
if self.downsamplers is not None:
|
391 |
+
for downsampler in self.downsamplers:
|
392 |
+
hidden_states = downsampler(hidden_states)
|
393 |
+
|
394 |
+
output_states += (hidden_states,)
|
395 |
+
|
396 |
+
return hidden_states, output_states
|
397 |
+
|
398 |
+
|
399 |
+
class CrossAttnUpBlock3D(nn.Module):
|
400 |
+
def __init__(
|
401 |
+
self,
|
402 |
+
in_channels: int,
|
403 |
+
out_channels: int,
|
404 |
+
prev_output_channel: int,
|
405 |
+
temb_channels: int,
|
406 |
+
dropout: float = 0.0,
|
407 |
+
num_layers: int = 1,
|
408 |
+
resnet_eps: float = 1e-6,
|
409 |
+
resnet_time_scale_shift: str = "default",
|
410 |
+
resnet_act_fn: str = "swish",
|
411 |
+
resnet_groups: int = 32,
|
412 |
+
resnet_pre_norm: bool = True,
|
413 |
+
attn_num_head_channels=1,
|
414 |
+
cross_attention_dim=1280,
|
415 |
+
output_scale_factor=1.0,
|
416 |
+
add_upsample=True,
|
417 |
+
dual_cross_attention=False,
|
418 |
+
use_linear_projection=False,
|
419 |
+
only_cross_attention=False,
|
420 |
+
upcast_attention=False,
|
421 |
+
):
|
422 |
+
super().__init__()
|
423 |
+
resnets = []
|
424 |
+
attentions = []
|
425 |
+
|
426 |
+
self.has_cross_attention = True
|
427 |
+
self.attn_num_head_channels = attn_num_head_channels
|
428 |
+
|
429 |
+
for i in range(num_layers):
|
430 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
431 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
432 |
+
|
433 |
+
resnets.append(
|
434 |
+
ResnetBlock3D(
|
435 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
436 |
+
out_channels=out_channels,
|
437 |
+
temb_channels=temb_channels,
|
438 |
+
eps=resnet_eps,
|
439 |
+
groups=resnet_groups,
|
440 |
+
dropout=dropout,
|
441 |
+
time_embedding_norm=resnet_time_scale_shift,
|
442 |
+
non_linearity=resnet_act_fn,
|
443 |
+
output_scale_factor=output_scale_factor,
|
444 |
+
pre_norm=resnet_pre_norm,
|
445 |
+
)
|
446 |
+
)
|
447 |
+
if dual_cross_attention:
|
448 |
+
raise NotImplementedError
|
449 |
+
attentions.append(
|
450 |
+
Transformer3DModel(
|
451 |
+
attn_num_head_channels,
|
452 |
+
out_channels // attn_num_head_channels,
|
453 |
+
in_channels=out_channels,
|
454 |
+
num_layers=1,
|
455 |
+
cross_attention_dim=cross_attention_dim,
|
456 |
+
norm_num_groups=resnet_groups,
|
457 |
+
use_linear_projection=use_linear_projection,
|
458 |
+
only_cross_attention=only_cross_attention,
|
459 |
+
upcast_attention=upcast_attention,
|
460 |
+
)
|
461 |
+
)
|
462 |
+
|
463 |
+
self.attentions = nn.ModuleList(attentions)
|
464 |
+
self.resnets = nn.ModuleList(resnets)
|
465 |
+
|
466 |
+
if add_upsample:
|
467 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
468 |
+
else:
|
469 |
+
self.upsamplers = None
|
470 |
+
|
471 |
+
self.gradient_checkpointing = False
|
472 |
+
|
473 |
+
def forward(
|
474 |
+
self,
|
475 |
+
hidden_states,
|
476 |
+
res_hidden_states_tuple,
|
477 |
+
temb=None,
|
478 |
+
encoder_hidden_states=None,
|
479 |
+
upsample_size=None,
|
480 |
+
attention_mask=None,
|
481 |
+
inter_frame=False,
|
482 |
+
**kwargs,
|
483 |
+
):
|
484 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
485 |
+
# pop res hidden states
|
486 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
487 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
488 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
489 |
+
|
490 |
+
if self.training and self.gradient_checkpointing:
|
491 |
+
|
492 |
+
def create_custom_forward(module, return_dict=None, inter_frame=None):
|
493 |
+
def custom_forward(*inputs):
|
494 |
+
if return_dict is not None:
|
495 |
+
return module(*inputs, return_dict=return_dict, inter_frame=inter_frame)
|
496 |
+
else:
|
497 |
+
return module(*inputs)
|
498 |
+
|
499 |
+
return custom_forward
|
500 |
+
|
501 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
502 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
503 |
+
create_custom_forward(attn, return_dict=False, inter_frame=inter_frame),
|
504 |
+
hidden_states,
|
505 |
+
encoder_hidden_states,
|
506 |
+
)[0]
|
507 |
+
else:
|
508 |
+
hidden_states = resnet(hidden_states, temb)
|
509 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, inter_frame=inter_frame, **kwargs).sample
|
510 |
+
|
511 |
+
if self.upsamplers is not None:
|
512 |
+
for upsampler in self.upsamplers:
|
513 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
514 |
+
|
515 |
+
return hidden_states
|
516 |
+
|
517 |
+
|
518 |
+
class UpBlock3D(nn.Module):
|
519 |
+
def __init__(
|
520 |
+
self,
|
521 |
+
in_channels: int,
|
522 |
+
prev_output_channel: int,
|
523 |
+
out_channels: int,
|
524 |
+
temb_channels: int,
|
525 |
+
dropout: float = 0.0,
|
526 |
+
num_layers: int = 1,
|
527 |
+
resnet_eps: float = 1e-6,
|
528 |
+
resnet_time_scale_shift: str = "default",
|
529 |
+
resnet_act_fn: str = "swish",
|
530 |
+
resnet_groups: int = 32,
|
531 |
+
resnet_pre_norm: bool = True,
|
532 |
+
output_scale_factor=1.0,
|
533 |
+
add_upsample=True,
|
534 |
+
):
|
535 |
+
super().__init__()
|
536 |
+
resnets = []
|
537 |
+
|
538 |
+
for i in range(num_layers):
|
539 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
540 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
541 |
+
|
542 |
+
resnets.append(
|
543 |
+
ResnetBlock3D(
|
544 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
545 |
+
out_channels=out_channels,
|
546 |
+
temb_channels=temb_channels,
|
547 |
+
eps=resnet_eps,
|
548 |
+
groups=resnet_groups,
|
549 |
+
dropout=dropout,
|
550 |
+
time_embedding_norm=resnet_time_scale_shift,
|
551 |
+
non_linearity=resnet_act_fn,
|
552 |
+
output_scale_factor=output_scale_factor,
|
553 |
+
pre_norm=resnet_pre_norm,
|
554 |
+
)
|
555 |
+
)
|
556 |
+
|
557 |
+
self.resnets = nn.ModuleList(resnets)
|
558 |
+
|
559 |
+
if add_upsample:
|
560 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
561 |
+
else:
|
562 |
+
self.upsamplers = None
|
563 |
+
|
564 |
+
self.gradient_checkpointing = False
|
565 |
+
|
566 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
567 |
+
for resnet in self.resnets:
|
568 |
+
# pop res hidden states
|
569 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
570 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
571 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
572 |
+
|
573 |
+
if self.training and self.gradient_checkpointing:
|
574 |
+
|
575 |
+
def create_custom_forward(module):
|
576 |
+
def custom_forward(*inputs):
|
577 |
+
return module(*inputs)
|
578 |
+
|
579 |
+
return custom_forward
|
580 |
+
|
581 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
582 |
+
else:
|
583 |
+
hidden_states = resnet(hidden_states, temb)
|
584 |
+
|
585 |
+
if self.upsamplers is not None:
|
586 |
+
for upsampler in self.upsamplers:
|
587 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
588 |
+
|
589 |
+
return hidden_states
|
models/util.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
import decord
|
6 |
+
decord.bridge.set_bridge('torch')
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
import PIL
|
10 |
+
from typing import List
|
11 |
+
from tqdm import tqdm
|
12 |
+
from einops import rearrange
|
13 |
+
import torchvision.transforms.functional as F
|
14 |
+
import random
|
15 |
+
|
16 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
17 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
18 |
+
outputs = []
|
19 |
+
for x in videos:
|
20 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
21 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
22 |
+
if rescale:
|
23 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
24 |
+
x = (x * 255).numpy().astype(np.uint8)
|
25 |
+
outputs.append(x)
|
26 |
+
|
27 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
28 |
+
imageio.mimsave(path, outputs, fps=fps)
|
29 |
+
|
30 |
+
def save_videos_grid_pil(videos: List[PIL.Image.Image], path: str, rescale=False, n_rows=4, fps=8):
|
31 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
32 |
+
outputs = []
|
33 |
+
for x in videos:
|
34 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
35 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
36 |
+
if rescale:
|
37 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
38 |
+
x = (x * 255).numpy().astype(np.uint8)
|
39 |
+
outputs.append(x)
|
40 |
+
|
41 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
42 |
+
imageio.mimsave(path, outputs, fps=fps)
|
43 |
+
|
44 |
+
def read_video(video_path, video_length, width=512, height=512, frame_rate=None):
|
45 |
+
vr = decord.VideoReader(video_path, width=width, height=height)
|
46 |
+
if frame_rate is None:
|
47 |
+
frame_rate = max(1, len(vr) // video_length)
|
48 |
+
sample_index = list(range(0, len(vr), frame_rate))[:video_length]
|
49 |
+
video = vr.get_batch(sample_index)
|
50 |
+
video = rearrange(video, "f h w c -> f c h w")
|
51 |
+
video = (video / 127.5 - 1.0)
|
52 |
+
return video
|
53 |
+
|
54 |
+
|
55 |
+
# DDIM Inversion
|
56 |
+
@torch.no_grad()
|
57 |
+
def init_prompt(prompt, pipeline):
|
58 |
+
uncond_input = pipeline.tokenizer(
|
59 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
60 |
+
return_tensors="pt"
|
61 |
+
)
|
62 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
63 |
+
text_input = pipeline.tokenizer(
|
64 |
+
[prompt],
|
65 |
+
padding="max_length",
|
66 |
+
max_length=pipeline.tokenizer.model_max_length,
|
67 |
+
truncation=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
)
|
70 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
71 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
72 |
+
|
73 |
+
return context
|
74 |
+
|
75 |
+
|
76 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
77 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
78 |
+
timestep, next_timestep = min(
|
79 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
80 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
81 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
82 |
+
beta_prod_t = 1 - alpha_prod_t
|
83 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
84 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
85 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
86 |
+
return next_sample
|
87 |
+
|
88 |
+
|
89 |
+
def get_noise_pred_single(latents, t, context, unet):
|
90 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
91 |
+
return noise_pred
|
92 |
+
|
93 |
+
|
94 |
+
@torch.no_grad()
|
95 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
96 |
+
context = init_prompt(prompt, pipeline)
|
97 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
98 |
+
all_latent = [latent]
|
99 |
+
latent = latent.clone().detach()
|
100 |
+
for i in tqdm(range(num_inv_steps)):
|
101 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
102 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
|
103 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
104 |
+
all_latent.append(latent)
|
105 |
+
return all_latent
|
106 |
+
|
107 |
+
|
108 |
+
@torch.no_grad()
|
109 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
110 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
111 |
+
return ddim_latents
|
112 |
+
|
113 |
+
|
114 |
+
"""optical flow and trajectories sampling"""
|
115 |
+
def preprocess(img1_batch, img2_batch, transforms):
|
116 |
+
img1_batch = F.resize(img1_batch, size=[512, 512], antialias=False)
|
117 |
+
img2_batch = F.resize(img2_batch, size=[512, 512], antialias=False)
|
118 |
+
return transforms(img1_batch, img2_batch)
|
119 |
+
|
120 |
+
def keys_with_same_value(dictionary):
|
121 |
+
result = {}
|
122 |
+
for key, value in dictionary.items():
|
123 |
+
if value not in result:
|
124 |
+
result[value] = [key]
|
125 |
+
else:
|
126 |
+
result[value].append(key)
|
127 |
+
|
128 |
+
conflict_points = {}
|
129 |
+
for k in result.keys():
|
130 |
+
if len(result[k]) > 1:
|
131 |
+
conflict_points[k] = result[k]
|
132 |
+
return conflict_points
|
133 |
+
|
134 |
+
def find_duplicates(input_list):
|
135 |
+
seen = set()
|
136 |
+
duplicates = set()
|
137 |
+
|
138 |
+
for item in input_list:
|
139 |
+
if item in seen:
|
140 |
+
duplicates.add(item)
|
141 |
+
else:
|
142 |
+
seen.add(item)
|
143 |
+
|
144 |
+
return list(duplicates)
|
145 |
+
|
146 |
+
def neighbors_index(point, window_size, H, W):
|
147 |
+
"""return the spatial neighbor indices"""
|
148 |
+
t, x, y = point
|
149 |
+
neighbors = []
|
150 |
+
for i in range(-window_size, window_size + 1):
|
151 |
+
for j in range(-window_size, window_size + 1):
|
152 |
+
if i == 0 and j == 0:
|
153 |
+
continue
|
154 |
+
if x + i < 0 or x + i >= H or y + j < 0 or y + j >= W:
|
155 |
+
continue
|
156 |
+
neighbors.append((t, x + i, y + j))
|
157 |
+
return neighbors
|
158 |
+
|
159 |
+
|
160 |
+
@torch.no_grad()
|
161 |
+
def sample_trajectories(frames, device):
|
162 |
+
from torchvision.models.optical_flow import Raft_Large_Weights
|
163 |
+
from torchvision.models.optical_flow import raft_large
|
164 |
+
|
165 |
+
weights = Raft_Large_Weights.DEFAULT
|
166 |
+
transforms = weights.transforms()
|
167 |
+
|
168 |
+
# frames, _, _ = torchvision.io.read_video(str(video_path), output_format="TCHW")
|
169 |
+
|
170 |
+
clips = list(range(len(frames)))
|
171 |
+
|
172 |
+
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
|
173 |
+
model = model.eval()
|
174 |
+
|
175 |
+
finished_trajectories = []
|
176 |
+
|
177 |
+
current_frames, next_frames = preprocess(frames[clips[:-1]], frames[clips[1:]], transforms)
|
178 |
+
list_of_flows = model(current_frames.to(device), next_frames.to(device))
|
179 |
+
predicted_flows = list_of_flows[-1]
|
180 |
+
|
181 |
+
predicted_flows = predicted_flows/512
|
182 |
+
|
183 |
+
resolutions = [64, 32, 16, 8]
|
184 |
+
res = {}
|
185 |
+
window_sizes = {64: 2,
|
186 |
+
32: 1,
|
187 |
+
16: 1,
|
188 |
+
8: 1}
|
189 |
+
|
190 |
+
for resolution in resolutions:
|
191 |
+
print("="*30)
|
192 |
+
trajectories = {}
|
193 |
+
predicted_flow_resolu = torch.round(resolution*torch.nn.functional.interpolate(predicted_flows, scale_factor=(resolution/512, resolution/512)))
|
194 |
+
|
195 |
+
T = predicted_flow_resolu.shape[0]+1
|
196 |
+
H = predicted_flow_resolu.shape[2]
|
197 |
+
W = predicted_flow_resolu.shape[3]
|
198 |
+
|
199 |
+
is_activated = torch.zeros([T, H, W], dtype=torch.bool)
|
200 |
+
|
201 |
+
for t in range(T-1):
|
202 |
+
flow = predicted_flow_resolu[t]
|
203 |
+
for h in range(H):
|
204 |
+
for w in range(W):
|
205 |
+
|
206 |
+
if not is_activated[t, h, w]:
|
207 |
+
is_activated[t, h, w] = True
|
208 |
+
# this point has not been traversed, start new trajectory
|
209 |
+
x = h + int(flow[1, h, w])
|
210 |
+
y = w + int(flow[0, h, w])
|
211 |
+
if x >= 0 and x < H and y >= 0 and y < W:
|
212 |
+
# trajectories.append([(t, h, w), (t+1, x, y)])
|
213 |
+
trajectories[(t, h, w)]= (t+1, x, y)
|
214 |
+
|
215 |
+
conflict_points = keys_with_same_value(trajectories)
|
216 |
+
for k in conflict_points:
|
217 |
+
index_to_pop = random.randint(0, len(conflict_points[k]) - 1)
|
218 |
+
conflict_points[k].pop(index_to_pop)
|
219 |
+
for point in conflict_points[k]:
|
220 |
+
if point[0] != T-1:
|
221 |
+
trajectories[point]= (-1, -1, -1) # stupid padding with (-1, -1, -1)
|
222 |
+
|
223 |
+
active_traj = []
|
224 |
+
all_traj = []
|
225 |
+
for t in range(T):
|
226 |
+
pixel_set = {(t, x//H, x%H):0 for x in range(H*W)}
|
227 |
+
new_active_traj = []
|
228 |
+
for traj in active_traj:
|
229 |
+
if traj[-1] in trajectories:
|
230 |
+
v = trajectories[traj[-1]]
|
231 |
+
new_active_traj.append(traj + [v])
|
232 |
+
pixel_set[v] = 1
|
233 |
+
else:
|
234 |
+
all_traj.append(traj)
|
235 |
+
active_traj = new_active_traj
|
236 |
+
active_traj+=[[pixel] for pixel in pixel_set if pixel_set[pixel] == 0]
|
237 |
+
all_traj += active_traj
|
238 |
+
|
239 |
+
useful_traj = [i for i in all_traj if len(i)>1]
|
240 |
+
for idx in range(len(useful_traj)):
|
241 |
+
if useful_traj[idx][-1] == (-1, -1, -1):
|
242 |
+
useful_traj[idx] = useful_traj[idx][:-1]
|
243 |
+
print("how many points in all trajectories for resolution{}?".format(resolution), sum([len(i) for i in useful_traj]))
|
244 |
+
print("how many points in the video for resolution{}?".format(resolution), T*H*W)
|
245 |
+
|
246 |
+
# validate if there are no duplicates in the trajectories
|
247 |
+
trajs = []
|
248 |
+
for traj in useful_traj:
|
249 |
+
trajs = trajs + traj
|
250 |
+
assert len(find_duplicates(trajs)) == 0, "There should not be duplicates in the useful trajectories."
|
251 |
+
|
252 |
+
# check if non-appearing points + appearing points = all the points in the video
|
253 |
+
all_points = set([(t, x, y) for t in range(T) for x in range(H) for y in range(W)])
|
254 |
+
left_points = all_points- set(trajs)
|
255 |
+
print("How many points not in the trajectories for resolution{}?".format(resolution), len(left_points))
|
256 |
+
for p in list(left_points):
|
257 |
+
useful_traj.append([p])
|
258 |
+
print("how many points in all trajectories for resolution{} after pending?".format(resolution), sum([len(i) for i in useful_traj]))
|
259 |
+
|
260 |
+
|
261 |
+
longest_length = max([len(i) for i in useful_traj])
|
262 |
+
sequence_length = (window_sizes[resolution]*2+1)**2 + longest_length - 1
|
263 |
+
|
264 |
+
seqs = []
|
265 |
+
masks = []
|
266 |
+
|
267 |
+
# create a dictionary to facilitate checking the trajectories to which each point belongs.
|
268 |
+
point_to_traj = {}
|
269 |
+
for traj in useful_traj:
|
270 |
+
for p in traj:
|
271 |
+
point_to_traj[p] = traj
|
272 |
+
|
273 |
+
for t in range(T):
|
274 |
+
for x in range(H):
|
275 |
+
for y in range(W):
|
276 |
+
neighbours = neighbors_index((t,x,y), window_sizes[resolution], H, W)
|
277 |
+
sequence = [(t,x,y)]+neighbours + [(0,0,0) for i in range((window_sizes[resolution]*2+1)**2-1-len(neighbours))]
|
278 |
+
sequence_mask = torch.zeros(sequence_length, dtype=torch.bool)
|
279 |
+
sequence_mask[:len(neighbours)+1] = True
|
280 |
+
|
281 |
+
traj = point_to_traj[(t,x,y)].copy()
|
282 |
+
traj.remove((t,x,y))
|
283 |
+
sequence = sequence + traj + [(0,0,0) for k in range(longest_length-1-len(traj))]
|
284 |
+
sequence_mask[(window_sizes[resolution]*2+1)**2: (window_sizes[resolution]*2+1)**2 + len(traj)] = True
|
285 |
+
|
286 |
+
seqs.append(sequence)
|
287 |
+
masks.append(sequence_mask)
|
288 |
+
|
289 |
+
seqs = torch.tensor(seqs)
|
290 |
+
masks = torch.stack(masks)
|
291 |
+
res["traj{}".format(resolution)] = seqs
|
292 |
+
res["mask{}".format(resolution)] = masks
|
293 |
+
return res
|
294 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.1.1 # if you encounter CUDA verision mismatches error, try to install torch manually to specify the version that matches your cuda version
|
2 |
+
xformers==0.0.23
|
3 |
+
accelerate==0.24.1
|
4 |
+
diffusers==0.19.0
|
5 |
+
transformers==4.35.0
|
6 |
+
imageio==2.34.2
|
7 |
+
numpy==1.23.5
|
8 |
+
imageio-ffmpeg==0.5.1
|
9 |
+
fastapi==0.111.0
|
10 |
+
einops
|
11 |
+
decord
|
12 |
+
av
|
13 |
+
# dlib==19.24.2
|
14 |
+
# tensorboard==2.12.0
|
15 |
+
# PyYAML
|
16 |
+
# pyfacer
|
17 |
+
# timm
|
18 |
+
# huggingface-hub
|
19 |
+
# gdown
|
20 |
+
# natsort
|
21 |
+
# imutils
|
22 |
+
# batch-face
|
23 |
+
# datasets
|
24 |
+
# albumentations
|
25 |
+
# spiga
|
26 |
+
# omegaconf
|