# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py from dataclasses import dataclass from typing import Optional, Callable import math import torch import torch.nn.functional as F from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers import ModelMixin from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from diffusers.models.attention import FeedForward, AdaLayerNorm from diffusers.models.cross_attention import CrossAttention from einops import rearrange, repeat @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True, \ inter_frame=False, **kwargs): # Input assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) batch, channel, height, weight = hidden_states.shape residual = hidden_states # check resolution resolu = hidden_states.shape[-1] trajs = {} trajs["traj"] = kwargs["trajs"]["traj{}".format(resolu)] trajs["mask"] = kwargs["trajs"]["mask{}".format(resolu)] trajs["t"] = kwargs["t"] trajs["old_qk"] = kwargs["old_qk"] hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, inter_frame=inter_frame, **trajs ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None # Fully self.attn1 = FullyFrameAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=cross_attention_dim if only_cross_attention else None, upcast_attention=upcast_attention, ) self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) # Cross-Attn if cross_attention_dim is not None: self.attn2 = CrossAttention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) else: self.attn2 = None if cross_attention_dim is not None: self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) else: self.norm2 = None # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None): if not is_xformers_available(): print("Here is how to install it") raise ModuleNotFoundError( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers", name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" " available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers if self.attn2 is not None: self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, \ inter_frame=False, **kwargs): # SparseCausal-Attention norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) if self.only_cross_attention: hidden_states = ( self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask, inter_frame=inter_frame, **kwargs) + hidden_states ) else: hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length, inter_frame=inter_frame, **kwargs) + hidden_states if self.attn2 is not None: # Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask ) + hidden_states ) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class FullyFrameAttention(nn.Module): r""" A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. """ def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias=False, upcast_attention: bool = False, upcast_softmax: bool = False, added_kv_proj_dim: Optional[int] = None, norm_num_groups: Optional[int] = None, ): super().__init__() inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.scale = dim_head**-0.5 self.heads = heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self.sliceable_head_dim = heads self._slice_size = None self._use_memory_efficient_attention_xformers = False self.added_kv_proj_dim = added_kv_proj_dim if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) else: self.group_norm = None self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) self.to_out.append(nn.Dropout(dropout)) self.q = None self.inject_q = None self.k = None self.inject_k = None def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_heads_to_batch_dim2(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3) return tensor def reshape_heads_to_batch_dim3(self, tensor): batch_size1, batch_size2, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size1, batch_size2, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 3, 1, 2, 4) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def set_attention_slice(self, slice_size): if slice_size is not None and slice_size > self.sliceable_head_dim: raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") self._slice_size = slice_size def _attention(self, query, key, value, attention_mask=None): if self.upcast_attention: query = query.float() key = key.float() attention_scores = torch.baddbmm( torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), query, key.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attention_scores = attention_scores + attention_mask if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) # cast back to the original dtype attention_probs = attention_probs.to(value.dtype) # compute attention output hidden_states = torch.bmm(attention_probs, value) # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] if self.upcast_attention: query_slice = query_slice.float() key_slice = key_slice.float() attn_slice = torch.baddbmm( torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), query_slice, key_slice.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attn_slice = attn_slice + attention_mask[start_idx:end_idx] if self.upcast_softmax: attn_slice = attn_slice.float() attn_slice = attn_slice.softmax(dim=-1) # cast back to the original dtype attn_slice = attn_slice.to(value.dtype) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): # TODO attention_mask query = query.contiguous() key = key.contiguous() value = value.contiguous() hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, inter_frame=False, **kwargs): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states h = w = int(math.sqrt(sequence_length)) if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) # (bf) x d(hw) x c self.q = query if self.inject_q is not None: query = self.inject_q dim = query.shape[-1] query_old = query.clone() # All frames query = rearrange(query, "(b f) d c -> b (f d) c", f=video_length) query = self.reshape_heads_to_batch_dim(query) if self.added_kv_proj_dim is not None: raise NotImplementedError encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) self.k = key if self.inject_k is not None: key = self.inject_k key_old = key.clone() value = self.to_v(encoder_hidden_states) if inter_frame: key = rearrange(key, "(b f) d c -> b f d c", f=video_length)[:, [0, -1]] value = rearrange(value, "(b f) d c -> b f d c", f=video_length)[:, [0, -1]] key = rearrange(key, "b f d c -> b (f d) c",) value = rearrange(value, "b f d c -> b (f d) c") else: # All frames key = rearrange(key, "(b f) d c -> b (f d) c", f=video_length) value = rearrange(value, "(b f) d c -> b (f d) c", f=video_length) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) if h in [64]: hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=video_length) if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if kwargs["old_qk"] == 1: query = query_old key = key_old else: query = hidden_states key = hidden_states value = hidden_states traj = kwargs["traj"] traj = rearrange(traj, '(f n) l d -> f n l d', f=video_length, n=sequence_length) mask = rearrange(kwargs["mask"], '(f n) l -> f n l', f=video_length, n=sequence_length) mask = torch.cat([mask[:, :, 0].unsqueeze(-1), mask[:, :, -video_length+1:]], dim=-1) traj_key_sequence_inds = torch.cat([traj[:, :, 0, :].unsqueeze(-2), traj[:, :, -video_length+1:, :]], dim=-2) t_inds = traj_key_sequence_inds[:, :, :, 0] x_inds = traj_key_sequence_inds[:, :, :, 1] y_inds = traj_key_sequence_inds[:, :, :, 2] query_tempo = query.unsqueeze(-2) _key = rearrange(key, '(b f) (h w) d -> b f h w d', b=int(batch_size/video_length), f=video_length, h=h, w=w) _value = rearrange(value, '(b f) (h w) d -> b f h w d', b=int(batch_size/video_length), f=video_length, h=h, w=w) key_tempo = _key[:, t_inds, x_inds, y_inds] value_tempo = _value[:, t_inds, x_inds, y_inds] key_tempo = rearrange(key_tempo, 'b f n l d -> (b f) n l d') value_tempo = rearrange(value_tempo, 'b f n l d -> (b f) n l d') mask = rearrange(torch.stack([mask, mask]), 'b f n l -> (b f) n l') mask = mask[:,None].repeat(1, self.heads, 1, 1).unsqueeze(-2) attn_bias = torch.zeros_like(mask, dtype=key_tempo.dtype) # regular zeros_like attn_bias[~mask] = -torch.inf # flow attention query_tempo = self.reshape_heads_to_batch_dim3(query_tempo) key_tempo = self.reshape_heads_to_batch_dim3(key_tempo) value_tempo = self.reshape_heads_to_batch_dim3(value_tempo) attn_matrix2 = query_tempo @ key_tempo.transpose(-2, -1) / math.sqrt(query_tempo.size(-1)) + attn_bias attn_matrix2 = F.softmax(attn_matrix2, dim=-1) out = (attn_matrix2@value_tempo).squeeze(-2) hidden_states = rearrange(out,'(b f) k (h w) d -> b (f h w) (k d)', b=int(batch_size/video_length), f=video_length, h=h, w=w) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) # All frames hidden_states = rearrange(hidden_states, "b (f d) c -> (b f) d c", f=video_length) return hidden_states