File size: 12,266 Bytes
1d24639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn

from ..loaders import PatchedLoraProjection, text_encoder_attn_modules, text_encoder_mlp_modules
from ..utils import logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float = 1.0):
    for _, attn_module in text_encoder_attn_modules(text_encoder):
        if isinstance(attn_module.q_proj, PatchedLoraProjection):
            attn_module.q_proj.lora_scale = lora_scale
            attn_module.k_proj.lora_scale = lora_scale
            attn_module.v_proj.lora_scale = lora_scale
            attn_module.out_proj.lora_scale = lora_scale

    for _, mlp_module in text_encoder_mlp_modules(text_encoder):
        if isinstance(mlp_module.fc1, PatchedLoraProjection):
            mlp_module.fc1.lora_scale = lora_scale
            mlp_module.fc2.lora_scale = lora_scale


class LoRALinearLayer(nn.Module):
    r"""
    A linear layer that is used with LoRA.

    Parameters:
        in_features (`int`):
            Number of input features.
        out_features (`int`):
            Number of output features.
        rank (`int`, `optional`, defaults to 4):
            The rank of the LoRA layer.
        network_alpha (`float`, `optional`, defaults to `None`):
            The value of the network alpha used for stable learning and preventing underflow. This value has the same
            meaning as the `--network_alpha` option in the kohya-ss trainer script. See
            https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        device (`torch.device`, `optional`, defaults to `None`):
            The device to use for the layer's weights.
        dtype (`torch.dtype`, `optional`, defaults to `None`):
            The dtype to use for the layer's weights.
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        network_alpha: Optional[float] = None,
        device: Optional[Union[torch.device, str]] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRAConv2dLayer(nn.Module):
    r"""
    A convolutional layer that is used with LoRA.

    Parameters:
        in_features (`int`):
            Number of input features.
        out_features (`int`):
            Number of output features.
        rank (`int`, `optional`, defaults to 4):
            The rank of the LoRA layer.
        kernel_size (`int` or `tuple` of two `int`, `optional`, defaults to 1):
            The kernel size of the convolution.
        stride (`int` or `tuple` of two `int`, `optional`, defaults to 1):
            The stride of the convolution.
        padding (`int` or `tuple` of two `int` or `str`, `optional`, defaults to 0):
            The padding of the convolution.
        network_alpha (`float`, `optional`, defaults to `None`):
            The value of the network alpha used for stable learning and preventing underflow. This value has the same
            meaning as the `--network_alpha` option in the kohya-ss trainer script. See
            https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        kernel_size: Union[int, Tuple[int, int]] = (1, 1),
        stride: Union[int, Tuple[int, int]] = (1, 1),
        padding: Union[int, Tuple[int, int], str] = 0,
        network_alpha: Optional[float] = None,
    ):
        super().__init__()

        self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
        # according to the official kohya_ss trainer kernel_size are always fixed for the up layer
        # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
        self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)

        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRACompatibleConv(nn.Conv2d):
    """
    A convolutional layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
        fusion = fusion.reshape((w_orig.shape))
        fused_weight = w_orig + (lora_scale * fusion)

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.data.dtype, fused_weight.data.device

        self.w_up = self.w_up.to(device=device).float()
        self.w_down = self.w_down.to(device).float()

        fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
        fusion = fusion.reshape((fused_weight.shape))
        unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        if self.lora_layer is None:
            # make sure to the functional Conv2D function as otherwise torch.compile's graph will break
            # see: https://github.com/huggingface/diffusers/pull/4315
            return F.conv2d(
                hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
            )
        else:
            original_outputs = F.conv2d(
                hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
            )
            return original_outputs + (scale * self.lora_layer(hidden_states))


class LoRACompatibleLinear(nn.Linear):
    """
    A Linear layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        if self.lora_layer is None:
            out = super().forward(hidden_states)
            return out
        else:
            out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
            return out